CRAN Package Check Results for Package brif

Last updated on 2025-03-11 09:50:38 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 1.4.1 18.61 24.92 43.53 ERROR
r-devel-linux-x86_64-debian-gcc 1.4.1 14.65 20.25 34.90 OK
r-devel-linux-x86_64-fedora-clang 1.4.1 70.75 OK
r-devel-linux-x86_64-fedora-gcc 1.4.1 76.92 OK
r-devel-macos-arm64 1.4.1 24.00 OK
r-devel-macos-x86_64 1.4.1 39.00 OK
r-devel-windows-x86_64 1.4.1 20.00 76.00 96.00 OK
r-patched-linux-x86_64 1.4.1 19.35 23.85 43.20 OK
r-release-linux-x86_64 1.4.1 20.86 24.02 44.88 OK
r-release-macos-arm64 1.4.1 29.00 OK
r-release-macos-x86_64 1.4.1 37.00 OK
r-release-windows-x86_64 1.4.1 20.00 70.00 90.00 OK
r-oldrel-macos-arm64 1.4.1 OK
r-oldrel-macos-x86_64 1.4.1 39.00 OK
r-oldrel-windows-x86_64 1.4.1 24.00 80.00 104.00 OK

Check Details

Version: 1.4.1
Check: examples
Result: ERROR Running examples in ‘brif-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: brif > ### Title: Build a model (and make predictions) > ### Aliases: brif > > ### ** Examples > > trainset <- sample(1:nrow(iris), 0.5*nrow(iris)) > validset <- setdiff(1:nrow(iris), trainset) > > # Train and predict at once > pred_scores <- brif(Species~., data = iris, subset = trainset, + newdata = iris[validset, 1:4], type = 'score') > pred_labels <- brif(Species~., data = iris, subset = trainset, + newdata = iris[validset, 1:4], type = 'class') > > # Confusion matrix > table(pred_labels, iris[validset, 5]) pred_labels setosa versicolor virginica setosa 22 4 0 versicolor 0 26 2 virginica 0 0 21 > > # Accuracy > sum(pred_labels == iris[validset, 5])/length(validset) [1] 0.92 > > # Train using the formula format > bf <- brif(Species~., data = iris, subset = trainset) > > # Or equivalently, train using the data.frame format > bf <- brif(iris[trainset, c(5,1:4)]) > > # Make a prediction > pred_scores <- predict(bf, iris[validset, 1:4], type = 'score') > pred_labels <- predict(bf, iris[validset, 1:4], type = 'class') > > # Regression > bf <- brif(mpg ~., data = mtcars) > pred <- predict(bf, mtcars[2:11]) *** caught segfault *** address 0x8, cause 'memory not mapped' Traceback: 1: rfpredict(object, newdata, as.integer(vote_method), as.integer(nthreads)) 2: predict.brif(bf, mtcars[2:11]) 3: predict(bf, mtcars[2:11]) An irrecoverable exception occurred. R is aborting now ... Segmentation fault Flavor: r-devel-linux-x86_64-debian-clang