f(x)=1σ√2πe−(x−μ)22σ2 with μ the mean of the distribution and σ the standard deviation
F(x)=∫x−∞1σ√2πe−(y−μ)22σ2dy=∫x−μσ−∞1√2πe−z22dz=12[1+erf(x−μσ√2)] with erf being the error function.
L(μ,σ;X)=∑i[−12ln(2π)−ln(σ)−12σ2(Xi−μ)2]
V(μ,σ;X)=(∂L∂μ∂L∂σ)=∑i(Xi−μσ2(Xi−μ)2−σ2σ3)
J(μ,σ;X)=−(∂2L∂μ2∂2L∂μ∂σ∂2L∂σ∂μ∂2L∂σ2)=∑i(1σ22(Xi−μ)σ32(Xi−μ)σ33(Xi−μ)2−σ2σ4)