
Package ‘MethEvolSIM’
March 17, 2025

Title Simulate DNA Methylation Dynamics on Different Genomic
Structures along Genealogies

Version 0.2

Author Sara Castillo Vicente [aut, cre],
Dirk Metzler [aut, ths]

Maintainer Sara Castillo Vicente <castillo@bio.lmu.de>

Description DNA methylation is an epigenetic modification involved in genomic stability,
gene regulation, development and disease.
DNA methylation occurs mainly through the addition of a methyl group to cytosines,
for example to cytosines in a CpG dinucleotide context (CpG stands for a cytosine fol-
lowed by a guanine).
Tissue-specific methylation patterns lead to genomic regions with different characteristic
methylation levels.
E.g. in vertebrates CpG islands (regions with high CpG content) that are associated to pro-
moter regions of
expressed genes tend to be unmethylated.
'MethEvolSIM' is a model-based simulation software for the generation and modification
of cytosine methylation patterns along a given tree, which can be a genealogy of
cells within an organism, a coalescent tree of DNA sequences sampled from a popula-
tion, or a species tree.
The simulations are based on an extension of the model of
Grosser & Metzler (2020) <doi:10.1186/s12859-020-3438-5> and allows for changes of
the methylation states at single cytosine positions as well as simultaneous changes of methylation
frequencies in genomic structures like CpG islands.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

Imports R6, ape

Depends R (>= 4.0)

VignetteBuilder knitr

1

https://doi.org/10.1186/s12859-020-3438-5

2 Contents

NeedsCompilation no

Repository CRAN

Date/Publication 2025-03-17 07:00:03 UTC

Contents

categorize_islandGlbSt . 3
categorize_siteMethSt . 4
cftpStepGenerator . 5
combiStructureGenerator . 6
compare_CherryFreqs . 13
computeFitch_islandGlbSt . 14
compute_fitch . 15
compute_meanCor_i . 16
compute_meanCor_ni . 17
countSites_cherryMethDiff . 19
count_upm . 21
freqSites_cherryMethDiff . 21
get_cherryDist . 23
get_islandMeanFreqM . 24
get_islandMeanFreqP . 25
get_islandSDFreqM . 26
get_islandSDFreqP . 27
get_meanMeth_islands . 28
get_nonislandMeanFreqM . 29
get_nonislandMeanFreqP . 30
get_nonislandSDFreqM . 31
get_nonislandSDFreqP . 33
get_parameterValues . 34
get_siteFChange_cherry . 35
MeanSiteFChange_cherry . 36
mean_CherryFreqsChange_i . 38
mean_TreeFreqsChange_i . 39
pValue_CherryFreqsChange_i . 41
simulate_evolData . 43
simulate_initialData . 45
singleStructureGenerator . 46
treeMultiRegionSimulator . 55
validate_dataAcrossTips . 57
validate_data_cherryDist . 58
validate_structureIndices . 59
validate_tree . 60

Index 61

categorize_islandGlbSt 3

categorize_islandGlbSt

Categorize Global States of CpG Islands

Description

This function categorizes CpG islands into unmethylated, methylated, or partially methylated states
based on specified thresholds.

Usage

categorize_islandGlbSt(meanMeth_islands, u_threshold, m_threshold)

Arguments

meanMeth_islands

A numeric vector containing the mean methylation levels for CpG islands at
each tip.

u_threshold A numeric value (0-1) defining the threshold for categorization as unmethylated.

m_threshold A numeric value (0-1) defining the threshold for categorization as methylated.

Details

The function assigns each island a state:

"u" if mean methylation lower or equal to u_threshold

"m" if mean methylation greater or equal to m_threshold

"p" if mean methylation is in between

Value

A character vector of length equal to meanMeth_islands, containing "u", "p", or "m" for each
island.

Examples

meanMeth_islands <- c(0.1, 0.4, 0.8)

categorize_islandGlbSt(meanMeth_islands, 0.2, 0.8)

4 categorize_siteMethSt

categorize_siteMethSt Categorize Methylation Frequencies Based on Thresholds

Description

This function categorizes the values in data[[tip]][[structure]] into three categories:

• 0 for unmethylated sites, where values are smaller or equal to u_threshold.

• 0.5 for partially methylated sites, where values are between u_threshold and m_threshold.

• 1 for methylated sites, where values are larger or equal to m_threshold.

Usage

categorize_siteMethSt(data, u_threshold = 0.2, m_threshold = 0.8)

Arguments

data A list structured as data[[tip]][[structure]], where tip corresponds to
tree tips, and structure corresponds to each genomic structure (e.g., island/non-
island).

u_threshold A numeric value representing the upper bound for values to be classified as
unmethylated (0). Default 0.2.

m_threshold A numeric value representing the lower bound for values to be classified as
methylated (1). Default 0.8.

Details

If any value in data[[tip]][[structure]] is outside these categories, it is transformed based on
the given thresholds.

Value

A transformed version of data where each value is categorized as 0 (unmethylated), 0.5 (partially
methylated), or 1 (methylated).

Examples

data <- list(
list(c(0.1, 0.2, 0.02), c(0.05, 0.25, 0.15)), # tip 1
list(c(0.01, 0.7, 0.85), c(0.3, 0.1, 0.98)) # tip 2
)

transformed_data <- categorize_siteMethSt(data, u_threshold = 0.2, m_threshold = 0.8)

cftpStepGenerator 5

cftpStepGenerator cftpStepGenerator

Description

an R6 class representing the steps for sampling a sequence of methylation states from the equi-
librium (SSEi and SSEc considered, IWE neglected) using the CFTP algorithm for a given com-
biStructureGenerator instance.

It is stored in the private attribute CFTP_info of combiStructureGenerator instances when calling
the combiStructureGenerator$cftp() method and can be retrieved with the combiStructureGenera-
tor$get_CFTP_info()

Public fields

singleStr_number Public attribute: Number of singleStr instances

singleStr_siteNumber Public attribute: Number of sites in singleStr instances

CFTP_highest_rate Public attribute: CFTP highest rate

number_steps Public attribute: counter of steps alredy generated

CFTP_chosen_singleStr Public attribute: list with vectors of equal size with chosen singleStr
index at each CFTP step

CFTP_chosen_site Public attribute: list with vectors of equal size with chosen site index at each
CFTP step

CFTP_event Public attribute: list with vectors of equal size with type of CFTP event at each CFTP
step.

CFTP_random Public attribute: list with vectors of equal size with CFTP threshold at each CFTP
step

steps_perVector Public attribute: size of vectors in lists CFTP_chosen_singleStr, CFTP_chosen_site,
CFTP_event and CFTP_random

Methods

Public methods:
• cftpStepGenerator$new()

• cftpStepGenerator$generate_events()

• cftpStepGenerator$clone()

Method new(): Create a new instance of class cftpStepGenerator with the info of the corre-
sponding combiStrucutre instance

Usage:
cftpStepGenerator$new(
singleStr_number,
singleStr_siteNumber,
CFTP_highest_rate

)

6 combiStructureGenerator

Arguments:

singleStr_number Number of singleStr instances
singleStr_siteNumber Number of sites in singleStr instances
CFTP_highest_rate CFTP highest rate across all singleStr withing combiStr instance

Returns: A new instance of class cftpStepGenerator

Method generate_events(): 1: SSEi to unmethylated, 2: SSEi to partially methylated, 3:
SSEi to methylated 4: SSEc copy left state, 5: SSEc copy right state
Public Method. Generates the events to apply for CFTP.

Usage:

cftpStepGenerator$generate_events(steps = 10000, testing = FALSE)

Arguments:

steps Integer value >=1
testing default FALSE. TRUE for testing output

Details: The function add steps to the existing ones. If called several times the given steps need
to be higher than the sum of steps generated before.

Returns: NULL when testing FALSE. Testing output when testing TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:

cftpStepGenerator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

combiStructureGenerator

combiStructureGenerator

Description

an R6 class representing several genomic structures. Each genomic structure contained is an object
of class singleStructureGenerator. Note that default clone(deep=TRUE) fails to clone singleStruc-
tureGenerator objects contained, use method $copy() instead.

Public fields

testing_output Public attribute: Testing output for initialize

combiStructureGenerator 7

Methods

Public methods:
• combiStructureGenerator$new()

• combiStructureGenerator$get_singleStr()

• combiStructureGenerator$get_singleStr_number()

• combiStructureGenerator$get_singleStr_siteNumber()

• combiStructureGenerator$get_island_number()

• combiStructureGenerator$get_island_index()

• combiStructureGenerator$set_IWE_events()

• combiStructureGenerator$get_IWE_events()

• combiStructureGenerator$set_name()

• combiStructureGenerator$get_name()

• combiStructureGenerator$get_own_index()

• combiStructureGenerator$set_own_index()

• combiStructureGenerator$get_parent_index()

• combiStructureGenerator$set_parent_index()

• combiStructureGenerator$get_offspring_index()

• combiStructureGenerator$set_offspring_index()

• combiStructureGenerator$add_offspring_index()

• combiStructureGenerator$get_mu()

• combiStructureGenerator$get_id()

• combiStructureGenerator$set_id()

• combiStructureGenerator$get_sharedCounter()

• combiStructureGenerator$reset_sharedCounter()

• combiStructureGenerator$set_singleStr()

• combiStructureGenerator$copy()

• combiStructureGenerator$branch_evol()

• combiStructureGenerator$get_highest_rate()

• combiStructureGenerator$set_CFTP_info()

• combiStructureGenerator$get_CFTP_info()

• combiStructureGenerator$cftp_apply_events()

• combiStructureGenerator$cftp()

• combiStructureGenerator$clone()

Method new(): Create a new combiStructureGenerator object.
Note that this object can be generated within a treeMultiRegionSimulator object.

Usage:
combiStructureGenerator$new(infoStr, params = NULL, testing = FALSE)

Arguments:
infoStr A data frame containing columns ’n’ for the number of sites, and ’globalState’ for the

favoured global methylation state. If initial equilibrium frequencies are given the dataframe
must contain 3 additional columns: ’u_eqFreq’, ’p_eqFreq’ and ’m_eqFreq’

8 combiStructureGenerator

params Default NULL. When given: data frame containing model parameters.
testing Default FALSE. TRUE for writing in public field of new instance $testing_output

Returns: A new combiStructureGenerator object.

Method get_singleStr(): Public method: Get one singleStructureGenerator object in $sin-
gleStr

Usage:
combiStructureGenerator$get_singleStr(i)

Arguments:

i index of the singleStructureGenerator object in $singleStr

Returns: the singleStructureGenerator object in $singleStr with index i

Method get_singleStr_number(): Public method: Get number of singleStructureGenerator
objects in $singleStr

Usage:
combiStructureGenerator$get_singleStr_number()

Returns: number of singleStructureGenerator object contained in $singleStr

Method get_singleStr_siteNumber(): Public method: Get number of sites in all singleStruc-
tureGenerator objects

Usage:
combiStructureGenerator$get_singleStr_siteNumber()

Returns: number of sites in all singleStructureGenerator objects

Method get_island_number(): Public method: Get number of singleStructureGenerator ob-
jects in $singleStr with $globalState "U" (CpG islands)

Usage:
combiStructureGenerator$get_island_number()

Returns: number of singleStructureGenerator in $singleStr objects with $globalState "U" (CpG
islands)

Method get_island_index(): Public method: Get index of singleStructureGenerator objects
in $singleStr with $globalState "U" (CpG islands)

Usage:
combiStructureGenerator$get_island_index()

Returns: index of singleStructureGenerator objects in $singleStr with $globalState "U" (CpG
islands)

Method set_IWE_events(): Public method: Set information of the IWE events sampled in a
tree branch

Usage:
combiStructureGenerator$set_IWE_events(a)

Arguments:

combiStructureGenerator 9

a value to which IWE_events should be set

Returns: NULL

Method get_IWE_events(): Public method: Get information of the IWE events sampled in a
tree branch

Usage:
combiStructureGenerator$get_IWE_events()

Returns: information of the IWE events sampled in a tree branch

Method set_name(): Public method: Set the name of the leaf if evolutionary process (simulated
from class treeMultiRegionSimulator) ends in a tree leaf.

Usage:
combiStructureGenerator$set_name(a)

Arguments:

a value to which name should be set

Returns: NULL

Method get_name(): Public method: Get the name of the leaf if evolutionary process (simulated
from class treeMultiRegionSimulator) ended in a tree leaf.

Usage:
combiStructureGenerator$get_name()

Returns: Name of the leaf if evolutionary process (simulated from class treeMultiRegionSim-
ulator) ended in a tree leaf. For iner tree nodes return NULL

Method get_own_index(): Public method: Set own branch index in the tree along which the
evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$get_own_index()

Returns: NULL

Method set_own_index(): Public method: Get own branch index in the tree along which the
evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$set_own_index(i)

Arguments:

i index of focal object

Returns: Own branch index in the tree along which the evolutionary process is simulated (from
class treeMultiRegionSimulator).

Method get_parent_index(): Public method: Get parent branch index in the tree along which
the evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$get_parent_index()

10 combiStructureGenerator

Returns: Parent branch index in the tree along which the evolutionary process is simulated
(from class treeMultiRegionSimulator).

Method set_parent_index(): Public method: Set parent branch index in the tree along which
the evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$set_parent_index(i)

Arguments:
i set parent_index to this value

Returns: NULL

Method get_offspring_index(): Public method: Get offspring branch index in the tree along
which the evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$get_offspring_index()

Returns: Offspring branch index in the tree along which the evolutionary process is simulated
(from class treeMultiRegionSimulator).

Method set_offspring_index(): Public method: Set offspring branch index in the tree along
which the evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$set_offspring_index(i)

Arguments:
i set offspring_index to this value

Returns: NULL

Method add_offspring_index(): Public method: Add offspring branch index in the tree along
which the evolutionary process is simulated (from class treeMultiRegionSimulator).

Usage:
combiStructureGenerator$add_offspring_index(i)

Arguments:
i index to be added

Returns: NULL

Method get_mu(): Public method.

Usage:
combiStructureGenerator$get_mu()

Returns: Model parameter for the rate of the IWE evolutionary process (per island and branch
length).

Method get_id(): Public method. Get the unique ID of the instance

Usage:
combiStructureGenerator$get_id()

combiStructureGenerator 11

Returns: A numeric value representing the unique ID of the instance.

Method set_id(): Public method. Set the unique ID of the instance

Usage:
combiStructureGenerator$set_id(id)

Arguments:
id integer value to identificate the combiStructure instance

Returns: A numeric value representing the unique ID of the instance.

Method get_sharedCounter(): Public method. Get the counter value from the shared envi-
ronment between instances of combiStructureGenerator class

Usage:
combiStructureGenerator$get_sharedCounter()

Returns: Numeric counter value.

Method reset_sharedCounter(): Public method. Reset the counter value of the shared envi-
ronment between instances of combiStructureGenerator class

Usage:
combiStructureGenerator$reset_sharedCounter()

Returns: NULL

Method set_singleStr(): Public method: Clone each singleStructureGenerator object in $sin-
gleStr

Usage:
combiStructureGenerator$set_singleStr(singStrList)

Arguments:
singStrList object to be cloned

Returns: NULL

Method copy(): Public method: Clone combiStructureGenerator object and all singleStructure-
Generator objects in it

Usage:
combiStructureGenerator$copy()

Returns: cloned combiStructureGenerator object

Method branch_evol(): Simulate CpG dinucleotide methylation state evolution along a tree
branch. The function samples the IWE events on the tree branch and simulates the evolution
through the SSE and IWE processes.

Usage:
combiStructureGenerator$branch_evol(branch_length, dt, testing = FALSE)

Arguments:
branch_length Length of the branch.
dt Length of SSE time steps.

12 combiStructureGenerator

testing Default FALSE. TRUE for testing purposes.

Details: It handles both cases where IWE events are sampled or not sampled within the branch.

Returns: Default NULL. If testing = TRUE it returns information for testing purposes.

Method get_highest_rate(): Public Method. Gets the highest rate among all singleStructure-
Generator objects for CFTP.

Usage:
combiStructureGenerator$get_highest_rate()

Returns: Highest rate value.

Method set_CFTP_info(): Public Method. Sets a cftpStepGenerator instance asthe CFTP info.

Usage:
combiStructureGenerator$set_CFTP_info(CFTP_instance)

Arguments:

CFTP_instance CFTP info.

Returns: NULL

Method get_CFTP_info(): Public Method. Gets the CFTP info.

Usage:
combiStructureGenerator$get_CFTP_info()

Returns: CFTP info.

Method cftp_apply_events(): Public Method. Applies the CFTP events.

Usage:
combiStructureGenerator$cftp_apply_events(testing = FALSE)

Arguments:

testing default FALSE. TRUE for testing output

Returns: NULL when testing FALSE. Testing output when testing TRUE.

Method cftp(): Public Method. Applies the CFTP algorithm to evolve a structure and checks
for convergence by comparing methylation states.
This method generates CFTP steps until the methylation sequences of the current structure and a
cloned structure become identical across all singleStr instances or a step limit is reached. If the
step limit is exceeded, an approximation method is applied to finalize the sequence.

Usage:
combiStructureGenerator$cftp(
steps = 10000,
step_limit = 327680000,
testing = FALSE

)

Arguments:

steps minimum number of steps to apply (default 10000).

compare_CherryFreqs 13

step_limit maximum number of steps before applying an approximation method (default
327680000 corresponding to size of CFTP info of approx 6.1 GB). If this limit is reached,
the algorithm stops and an approximation is applied.

testing logical. If TRUE, returns additional testing output including the current structure, the
cloned structure, the counter value, total steps, and the chosen site for the CFTP events.
Default is FALSE.

Returns: NULL when testing is FALSE. If testing is TRUE, returns a list with:
• self: the current object after applying the CFTP algorithm.
• combi_m: a deep cloned object with applied CFTP events.
• counter: the number of iterations performed.
• total_steps: the number of steps applied by the CFTP algorithm.
• CFTP_chosen_site: the site selected during the CFTP event application.

Method clone(): The objects of this class are cloneable with this method.

Usage:
combiStructureGenerator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

compare_CherryFreqs Compare Methylation Frequencies Between Two Tips

Description

Performs a chi-squared test to compare the distribution of methylation states (unmethylated 0,
partially-methylated 0.5, and methylated 1) between two cherry tips. A cherry is a pair of leaf
nodes (also called tips or terminal nodes) in a phylogenetic tree that share a direct common ances-
tor.

Usage

compare_CherryFreqs(tip1, tip2, testing = FALSE)

Arguments

tip1 A numeric vector representing methylation states (0, 0.5, 1) at tip 1.

tip2 A numeric vector representing methylation states (0, 0.5, 1) at tip 2.

testing Logical; if TRUE, returns additional intermediate data including the contingency
table and test result.

Details

The function uses simulate.p.value = TRUE in chisq.test to compute the p-value via Monte
Carlo simulation to improve reliability regardless of whether the expected frequencies meet the
assumptions of the chi-squared test (i.e., expected counts of at least 5 in each category).

14 computeFitch_islandGlbSt

Value

If testing = TRUE, returns a list with the contingency table and chi-squared test results. Otherwise,
returns the p-value of the test.

Examples

tip1 <- c(0, 0, 1, 0.5, 1, 0.5)
tip2 <- c(0, 1, 1, 0, 0.5, 0.5)
compare_CherryFreqs(tip1, tip2)

computeFitch_islandGlbSt

Compute Fitch Parsimony for Global Methylation States at CpG Is-
lands

Description

This function categorizes CpG islands into methylation states and applies Fitch parsimony to esti-
mate the minimum number of state changes in a phylogenetic tree.

Usage

computeFitch_islandGlbSt(
index_islands,
data,
tree,
u_threshold,
m_threshold,
testing = FALSE

)

Arguments

index_islands A numeric vector specifying the indices of genomic structures corresponding to
islands.

data A list containing methylation states at tree tips, structured as data[[tip]][[structure]],
where each tip has the same number of structures, and each structure has the
same number of sites across tips.

tree A rooted binary tree in Newick format (character string) or as an ape phylo
object. Must have at least two tips.

u_threshold A numeric threshold value (0-1) defining the unmethylated category.

m_threshold A numeric threshold value (0-1) defining the methylated category.

testing Logical; if TRUE, returns additional intermediate data.

compute_fitch 15

Details

The function first validates the input data and categorizes CpG islands using categorize_islandGlbSt.
It then structures the data into a matrix matching tree tip labels and applies compute_fitch to infer
the minimum number of changes.

Value

If testing = TRUE, returns a list containing the categorized data matrix; otherwise, returns a nu-
meric vector of minimum state changes.

Examples

tree <- "((a:1,b:1):2,(c:2,d:2):1.5);"

data <- list(
list(rep(1,10), rep(0,5), rep(1,8)),
list(rep(1,10), rep(0.5,5), rep(0,8))

)

index_islands <- c(1,3)

computeFitch_islandGlbSt(index_islands, data, tree, 0.2, 0.6)

compute_fitch Compute Fitch Parsimony for Methylation Categories

Description

This function applies Fitch parsimony to determine the minimum number of changes required for
methylation categories at tree tips.

Usage

compute_fitch(tree, meth, input_control = TRUE)

Arguments

tree A rooted binary tree in Newick format (character string) or as an ape phylo
object. Must have at least two tips.

meth A matrix of methylation categories at the tree tips, with rows corresponding
to tips (names matching tree tip labels) and columns corresponding to sites or
structures.

input_control Logical; if TRUE, validates input consistency.

16 compute_meanCor_i

Value

A list containing:

optStateSet A list of sets of optimal states for the root at each site/structure.
minChange_number A numeric vector indicating the minimum number of changes for each site.

Examples

tree <- "((a:1,b:1):2,(c:2,d:2):1.5);"

meth <- matrix(c("u", "m", "p", "u", "p", "m", "m", "u"),
nrow=4, byrow=TRUE, dimnames=list(c("a", "b", "c", "d")))

compute_fitch(tree, meth)

compute_meanCor_i Compute the Mean Correlation of Methylation State in Islands

Description

This function calculates the mean correlation of methylation states within island structures, allowing
to exclude the shores.

Usage

compute_meanCor_i(
index_islands,
minN_CpG,
shore_length,
data,
sample_n,
categorized_data = FALSE

)

Arguments

index_islands A vector containing the structural indices for islands.
minN_CpG The minimum number of central CpGs required for computation.
shore_length The number of CpGs at each side of an island to exclude (shores).
data A list containing methylation states at tree tips for each genomic structure (is-

land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

compute_meanCor_ni 17

sample_n The number of tips (samples) to process.
categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Details

The function processes only islands with a minimum length equal to 2 * shore_length + minN_CpG.
If none has minimum length, returns NA

Value

A numeric value representing the mean correlation of methylation states in the central CpGs of
islands.

Examples

Example usage:
index_islands <- c(1, 2)
data <- list(

list(c(0, 1, 0.5, 1, 0.5, 0), c(0.5, 0.5, 1, 1, 0, 0)), # tip 1
list(c(1, 0, 1, 1, 0.5, 0), c(1, 1, 0.5, 0.5, 0, 1)) # tip 2

)
minN_CpG <- 2
shore_length <- 1
sample_n <- 2
compute_meanCor_i(index_islands, minN_CpG, shore_length, data, sample_n,

categorized_data = TRUE)

compute_meanCor_ni Compute the Mean Correlation of Methylation State in Non-islands

Description

This function calculates the mean correlation of methylation states within non-island structures,
allowing to exclude the shores.

Usage

compute_meanCor_ni(
index_nonislands,
minN_CpG,
shore_length,
data,
sample_n,
categorized_data = FALSE

)

18 compute_meanCor_ni

Arguments

index_nonislands

A vector containing the structural indices for non-islands.

minN_CpG The minimum number of central CpGs required for computation.

shore_length The number of CpGs at each side of an non-island to exclude (shores).

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of tips (samples) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Details

The function processes only non-islands with a minimum length equal to 2 * shore_length +
minN_CpG. If none has minimum length, returns NA

Value

A numeric value representing the mean correlation of methylation states in the central CpGs of
non-islands.

Examples

Example usage:
index_nonislands <- c(1, 2)
data <- list(

list(c(0, 1, 0.5, 1, 0.5, 0), c(0.5, 0.5, 1, 1, 0, 0)), # tip 1
list(c(1, 0, 1, 1, 0.5, 0), c(1, 1, 0.5, 0.5, 0, 1)) # tip 2

)
minN_CpG <- 2
shore_length <- 1
sample_n <- 2
compute_meanCor_ni(index_nonislands, minN_CpG, shore_length, data, sample_n,

categorized_data = TRUE)

countSites_cherryMethDiff 19

countSites_cherryMethDiff

Count Methylation Differences Between Cherry Pairs

Description

This function calculates the number of methylation differences between pairs of cherry tips in a
phylogenetic tree. A cherry is a pair of leaf nodes that share a direct common ancestor. The function
quantifies full and half methylation differences for each genomic structure (e.g., island/non-island)
across all sites.

Usage

countSites_cherryMethDiff(
cherryDist,
data,
categorized_data = FALSE,
input_control = TRUE

)

Arguments

cherryDist A data frame containing pairwise distances between the tips of a phylogenetic
tree that form cherries. This should be as the output of get_cherryDist, and
must include the following columns:

first_tip_name A character string representing the name of the first tip in the
cherry.

second_tip_name A character string representing the name of the second tip in
the cherry.

first_tip_index An integer representing the index of the first tip in the cherry.
second_tip_index An integer representing the index of the second tip in the

cherry.
dist A numeric value representing the sum of the branch lengths between the

two tips (i.e., the distance between the cherries).

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

20 countSites_cherryMethDiff

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

input_control A logical value indicating whether to validate the input data. If TRUE (default),
the function checks that the data has the required structure. It ensures that the
number of tips is sufficient and that the data structure is consistent across tips
and structures. If FALSE, the function assumes the tree is already valid and skips
the validation step.

Details

The function first verifies that cherryDist contains the required columns and has at least one row.
It also ensures that data contains a sufficient number of tips and that all structures have the same
number of sites. The function then iterates over each cherry and genomic structure to compute the
number of full and half methylation differences between the two tips of each cherry.

Value

A data frame with one row per cherry, containing the following columns:

tip_names A character string representing the names of the two tips in the cherry, concatenated
with a hyphen.

tip_indices A character string representing the indices of the two tips in the cherry, concatenated
with a hyphen.

dist A numeric value representing the sum of the branch distances between the cherry tips.

One column for each structure named with the structure number followed by _f An integer count
of the sites with a full methylation difference (where one tip is methylated and the other is un-
methylated) for the given structure.

One column for each structure named with the structure number followed by _h An integer count
of the sites with a half methylation difference (where one tip is partially methylated and the
other is either fully methylated or unmethylated) for the given structure.

Examples

Example data setup

data <- list(
list(c(0, 1, 0.5, 0), c(1, 1, 0, 0.5)),
list(c(1, 0, 0.5, 1), c(0, 1, 0.5, 0.5))

)

tree <- "(tip1:0.25, tip2:0.25);"

cherryDist <- get_cherryDist(tree)

countSites_cherryMethDiff(cherryDist, data, categorized_data = TRUE)

count_upm 21

count_upm Count Methylation States

Description

This internal function counts the number of sites with unmethylated, partially-methylated, and
methylated states in a given vector.

Usage

count_upm(data)

Arguments

data A numeric vector with methylation values: 0 (unmethylated), 0.5 (partially-
methylated), and 1 (methylated).

Value

An integer vector of length 3 containing counts of unmethylated, partially-methylated, and methy-
lated sites, respectively.

freqSites_cherryMethDiff

Compute Methylation Frequency Differences Between Cherry Pairs

Description

This function calculates the frequency of methylation differences between pairs of cherry tips in a
phylogenetic tree. A cherry is a pair of leaf nodes that share a direct common ancestor. The function
quantifies full and half methylation differences for each genomic structure (e.g., island/non-island)
across all sites and normalizes these counts by the number of sites per structure to obtain frequen-
cies.

Usage

freqSites_cherryMethDiff(
tree,
data,
categorized_data = FALSE,
input_control = TRUE

)

22 freqSites_cherryMethDiff

Arguments

tree A phylogenetic tree object. The function assumes it follows an appropriate for-
mat for downstream processing.

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

input_control A logical value indicating whether to validate the input data. If TRUE (default),
the function checks that the data has the required structure. It ensures that the
number of tips is sufficient and that the data structure is consistent across tips
and structures. If FALSE, the function assumes the tree is already valid and skips
the validation step.

Details

The function first validates the tree structure and extracts pairwise distances between cherry tips.
It then counts methylation differences using countSites_cherryMethDiff and normalizes these
counts by the number of sites per structure to compute frequencies. The resulting data frame pro-
vides a per-cherry frequency of methylation differences (half or full difference) across different
genomic structures.

Value

A data frame with one row per cherry, containing the following columns:

tip_names A character string representing the names of the two tips in the cherry, concatenated
with a hyphen.

tip_indices A character string representing the indices of the two tips in the cherry, concatenated
with a hyphen.

dist A numeric value representing the sum of the branch distances between the cherry tips.

One column for each structure named with the structure number followed by _f A numeric value
representing the frequency of sites with a full methylation difference (where one tip is methy-
lated and the other is unmethylated) for the given structure.

One column for each structure named with the structure number followed by _h A numeric value
representing the frequency of sites with a half methylation difference (where one tip is partially
methylated and the other is either fully methylated or unmethylated) for the given structure.

get_cherryDist 23

Examples

Example data setup

data <- list(
list(rep(1,10), rep(0,5), rep(1,8)),
list(rep(1,10), rep(0.5,5), rep(0,8)),
list(rep(1,10), rep(0.5,5), rep(0,8)),
list(c(rep(0,5), rep(0.5, 5)), c(0, 0, 1, 1, 1), c(0.5, 1, rep(0, 6))))

tree <- "((a:1.5,b:1.5):2,(c:2,d:2):1.5);"

freqSites_cherryMethDiff(tree, data, categorized_data = TRUE)

get_cherryDist Get Cherry Pair Distances from a Phylogenetic Tree

Description

This function computes the pairwise distances between the tips of a phylogenetic tree that are part
of cherries. A cherry is a pair of leaf nodes (also called tips or terminal nodes) in a phylogenetic tree
that share a direct common ancestor. In other words, if two leaves are connected to the same internal
node and no other leaves are connected to that internal node, they form a cherry. The distance is
calculated as the sum of the branch lengths between the two cherry tips.

Usage

get_cherryDist(tree, input_control = TRUE)

Arguments

tree A tree in Newick format (as a character string) or an object of class phylo from
the ape package. If the input is a character string, it must follow the Newick
or New Hampshire format (e.g. "((tip_1:1,tip_2:1):5,tip_3:6);"). If an
object of class phylo is provided, it should represent a valid phylogenetic tree.

input_control A logical value indicating whether to validate the input tree. If TRUE (default),
the function checks that the tree is in a valid format and has at least two tips.
If FALSE, the function assumes the tree is already valid and skips the validation
step.

Details

The function first checks if the input is either a character string in the Newick format or an object
of class phylo, unless input_control is set to FALSE. It then computes the pairwise distances
between the tips in the tree and identifies the sister pairs (cherries). The distance between each
cherry is the sum of the branch lengths leading to the sister tips.

The tips of each cherry are identified by their names and indices. The tip indices correspond to (a)
the index from left to right on the Newick string, (b) the order of the tip label in the phylo_object$tip.label,

24 get_islandMeanFreqM

and (c) the index in the methylation data list (data[[tip]][[structure]]) as obtained with the
function simulate_evolData() when the given tree has several tips.

If the tree is provided in Newick format, it will be parsed using the ape::read.tree function.

Value

A data frame with five columns:

first_tip_name A character string representing the name of the first tip in the cherry.
second_tip_name

A character string representing the name of the second tip in the cherry.
first_tip_index

An integer representing the index of the first tip in the cherry.
second_tip_index

An integer representing the index of the second tip in the cherry.

dist A numeric value representing the sum of the branch lengths between the two
tips (i.e., the distance between the cherries).

Examples

Example of a tree in Newick format

newick_tree <- "((a:1,b:2):5,c:6);"

get_cherryDist(newick_tree)

Example of using a phylo object from ape

library(ape)
tree_phylo <- read.tree(text = "((a:1,b:1):5,c:6);")

get_cherryDist(tree_phylo)

get_islandMeanFreqM Calculate the Mean Frequency of Methylated Sites in Islands

Description

This function computes the mean frequency of methylated sites (with methylation state 1) for a set
of structures identified as islands.

Usage

get_islandMeanFreqM(index_islands, data, sample_n, categorized_data = FALSE)

get_islandMeanFreqP 25

Arguments

index_islands A vector containing the structural indices for islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean frequency of methylated sites in the islands.

Examples

Example usage:
index_islands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

)
sample_n <- 2
get_islandMeanFreqM(index_islands, data, sample_n, categorized_data = TRUE)

get_islandMeanFreqP Calculate the Mean Frequency of Partially Methylated Sites in Islands

Description

This function computes the mean frequency of partially methylated sites (with methylation state
0.5) for the set of genomic structures identified as islands.

Usage

get_islandMeanFreqP(index_islands, data, sample_n, categorized_data = FALSE)

26 get_islandSDFreqM

Arguments

index_islands A vector containing the structural indices for islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean frequency of partially methylated sites in the islands.

Examples

Example usage:
index_islands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

)
sample_n <- 2
get_islandMeanFreqP(index_islands, data, sample_n, categorized_data = TRUE)

get_islandSDFreqM Calculate the Mean Standard Deviation of Methylated Sites in Islands

Description

This function computes the mean standard deviation of methylated sites (with methylation state 1)
for a set of genomic structures identified as islands.

Usage

get_islandSDFreqM(index_islands, data, sample_n, categorized_data = FALSE)

get_islandSDFreqP 27

Arguments

index_islands A vector containing the structural indices for islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of tips (samples) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean standard deviation of methylated sites in the islands.

Examples

Example usage:
index_islands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

)
sample_n <- 2
get_islandSDFreqM(index_islands, data, sample_n, categorized_data = TRUE)

get_islandSDFreqP Calculate the Mean Standard Deviation of Partially Methylated Sites
in Islands

Description

This function computes the mean standard deviation of partially methylated sites (with methylation
state 0.5) for a set of genomic structures identified as islands.

Usage

get_islandSDFreqP(index_islands, data, sample_n, categorized_data = FALSE)

28 get_meanMeth_islands

Arguments

index_islands A vector containing the structural indices for islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean standard deviation of partially methylated sites in the is-
lands.

Examples

Example usage:
index_islands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

)
sample_n <- 2
get_islandSDFreqP(index_islands, data, sample_n, categorized_data = TRUE)

get_meanMeth_islands Compute the Mean Methylation of CpG Islands

Description

This function calculates the mean methylation level for CpG islands across all tree tips.

Usage

get_meanMeth_islands(index_islands, data)

get_nonislandMeanFreqM 29

Arguments

index_islands A numeric vector specifying the indices of genomic structures corresponding to
islands.

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each tip has the same number of structures, and each structure has the
same number of sites across tips.

Value

A list where each element corresponds to a tree tip and contains a numeric vector representing the
mean methylation levels for the indexed CpG islands.

Examples

Example data setup

data <- list(
Tip 1
list(rep(1,10), rep(0,5), rep(1,8)),
Tip 2
list(rep(1,10), rep(0.5,5), rep(0,8))

)

index_islands <- c(1,3)

get_meanMeth_islands(index_islands, data)

get_nonislandMeanFreqM

Calculate the Mean Frequency of Methylated Sites in Non-Islands

Description

This function computes the mean frequency of methylated sites (with methylation state 1) for a set
of structures identified as non-islands.

Usage

get_nonislandMeanFreqM(
index_nonislands,
data,
sample_n,
categorized_data = FALSE

)

30 get_nonislandMeanFreqP

Arguments

index_nonislands

A vector containing the structural indices for non-islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean frequency of methylated sites in the non-islands.

Examples

Example usage:
index_nonislands <- c(1, 3)
data <- list(

list(c(1, 0, 1), c(0.5, 1, 1), c(1, 0, 0.5)), # tip 1
list(c(1, 0.5, 1), c(0.5, 1, 1), c(1, 0.5, 0.5)) # tip 2

)
sample_n <- 2
get_nonislandMeanFreqM(index_nonislands, data, sample_n, categorized_data = TRUE)

get_nonislandMeanFreqP

Calculate the Mean Frequency of Partially Methylated Sites in Non-
Islands

Description

This function computes the mean frequency of partially methylated sites (with methylation state
0.5) for a set of genomic structures identified as non-islands.

get_nonislandSDFreqM 31

Usage

get_nonislandMeanFreqP(
index_nonislands,
data,
sample_n,
categorized_data = FALSE

)

Arguments

index_nonislands

A vector containing the structural indices for non-islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.
categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean frequency of partially methylated sites in the non-islands.

Examples

Example usage:
index_nonislands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

)
sample_n <- 2
get_nonislandMeanFreqP(index_nonislands, data, sample_n, categorized_data = TRUE)

get_nonislandSDFreqM Calculate the Mean Standard Deviation of Methylated Sites in Non-
Islands

32 get_nonislandSDFreqM

Description

This function computes the mean standard deviation of methylated sites (with methylation state 1)
for a set of genomic structures identified as non-islands.

Usage

get_nonislandSDFreqM(
index_nonislands,
data,
sample_n,
categorized_data = FALSE

)

Arguments

index_nonislands

A vector containing the structural indices for non-islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of tips (samples) to process.

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean standard deviation of methylated sites in the non-islands.

Examples

Example usage:
index_nonislands <- c(1, 3)
data <- list(

list(c(1, 1, 1), c(0, 1, 0.5), c(1, 0, 1)), # tip 1
list(c(1, 0.5, 0), c(1, 1, 0.5), c(1, 1, 1)) # tip 2

)
sample_n <- 2
get_nonislandSDFreqM(index_nonislands, data, sample_n, categorized_data = TRUE)

get_nonislandSDFreqP 33

get_nonislandSDFreqP Calculate the Mean Standard Deviation of Partially Methylated Sites
in Non-Islands

Description

This function computes the mean standard deviation of partially methylated sites (with methylation
state 0.5) for a set of genomic structures identified as non-islands.

Usage

get_nonislandSDFreqP(
index_nonislands,
data,
sample_n,
categorized_data = FALSE

)

Arguments

index_nonislands

A vector containing the structural indices for non-islands.

data A list containing methylation states at tree tips for each genomic structure (is-
land / non-island) For a single tip: data[[structure]]. For multiple tips:
data[[tip]][[structure]]. Each element contains the methylation states at
the sites in a given tip and structure represented as 0, 0.5 or 1 (for unmethylated,
partially-methylated and methylated). If methylation states are not represented
as 0, 0.5, 1 they are categorized as 0 when value equal or under 0.2 0.5 when
value between 0.2 and 0.8 and 1 when value over 0.8. For customized catego-
rization thresholds use categorize_siteMethSt

sample_n The number of samples (tips) to process.
categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Value

A numeric value representing the mean standard deviation of partially methylated sites in the non-
islands.

Examples

Example usage:
index_nonislands <- c(1, 3)
data <- list(

list(c(0.5, 1, 0.5), c(0, 0.5, 1), c(1, 0, 0.5)), # tip 1
list(c(0.5, 0.5, 0), c(1, 0.5, 0.5), c(0.5, 0.5, 1)) # tip 2

34 get_parameterValues

)
sample_n <- 2
get_nonislandSDFreqP(index_nonislands, data, sample_n, categorized_data = TRUE)

get_parameterValues Get Default Parameter Values

Description

This function retrieves parameter values for the DNA methylation simulation.

Usage

get_parameterValues(rootData = NULL)

Arguments

rootData NULL to return default parameter values. For data parameter values, provide
rootData as the output of simulate_initialData()$data.

Details

The function called without arguments returns default parameter values. When rootData (as $data
output of simulate_initialData()) is given, it returns data parameter values.

Value

A data frame containing default parameter values.

Examples

Get default parameter values
default_values <- get_parameterValues()

Get parameter values of simulate_initialData() output
custom_params <- get_parameterValues()
infoStr <- data.frame(n = c(5, 10), globalState = c("M", "U"))
rootData <- simulate_initialData(infoStr = infoStr, params = custom_params)$data
rootData_paramValues <- get_parameterValues(rootData = rootData)

get_siteFChange_cherry 35

get_siteFChange_cherry

Compute Site Frequency of Methylation Changes per Cherry

Description

This function calculates the total frequency of methylation differences (both full and half changes)
for each genomic structure for each cherry in a phylogenetic tree. A cherry is a pair of leaf nodes
(also called tips or terminal nodes) in a phylogenetic tree that share a direct common ancestor. In
other words, if two leaves are connected to the same internal node and no other leaves are connected
to that internal node, they form a cherry.

Usage

get_siteFChange_cherry(tree, data, categorized_data = FALSE)

Arguments

tree A phylogenetic tree in Newick format or a phylo object from the ape package.
The function ensures the tree has a valid structure and at least two tips.

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

Details

The function first verifies that tree and data have valid structures and the minimum number of tips.
It then extracts per-cherry methylation differences using freqSites_cherryMethDiff, handling
potential errors. Finally, it aggregates the full and half methylation differences for each genomic
structure at each cherry.

Value

A data frame with one row per cherry, containing the following columns:

tip_names A character string representing the names of the two tips in the cherry, concatenated
with a hyphen.

36 MeanSiteFChange_cherry

tip_indices A character string representing the indices of the two tips in the cherry, concatenated
with a hyphen.

dist A numeric value representing the sum of the branch distances between the cherry tips.

One column for each structure named with the structure number A numeric value represent-
ing the total frequency of methylation changes (both full and half) for the given structure.

Examples

Example data setup

data <- list(
list(rep(1,10), rep(0,5), rep(1,8)),
list(rep(1,10), rep(0.5,5), rep(0,8)),
list(rep(1,10), rep(0.5,5), rep(0,8)),
list(c(rep(0,5), rep(0.5, 5)), c(0, 0, 1, 1, 1), c(0.5, 1, rep(0, 6))))

tree <- "((a:1.5,b:1.5):2,(c:2,d:2):1.5);"

get_siteFChange_cherry(tree, data, categorized_data = TRUE)

MeanSiteFChange_cherry

Compute the Mean Site Frequency of Methylation Changes per Cherry

Description

This function calculates the weighted mean frequency of methylation changes at island and non-
island genomic structures for each cherry in a phylogenetic tree. A cherry is a pair of leaf nodes
(also called tips or terminal nodes) in a phylogenetic tree that share a direct common ancestor.

Usage

MeanSiteFChange_cherry(
data,
categorized_data = FALSE,
tree,
index_islands,
index_nonislands

)

Arguments

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip

MeanSiteFChange_cherry 37

and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

tree A phylogenetic tree in Newick format or a phylo object from the ape package.
The function ensures the tree has a valid structure and at least two tips.

index_islands A numeric vector specifying the indices of genomic structures corresponding to
islands.

index_nonislands

A numeric vector specifying the indices of genomic structures corresponding to
non-islands.

Details

The function first validates the tree and the input data structure. It then computes the per-cherry
frequency of sites with different methylation states using get_siteFChange_cherry. The indices
provided for islands and non-islands are checked for validity using validate_structureIndices.
Finally, the function calculates the weighted mean site frequency of methylation changes for each
cherry, separately for islands and non-islands.

Value

A data frame with one row per cherry, containing the following columns:

tip_names A character string representing the names of the two tips in the cherry, concatenated
with a hyphen.

tip_indices A character string representing the indices of the two tips in the cherry, concatenated
with a hyphen.

dist A numeric value representing the sum of the branch distances between the cherry tips.

nonisland_meanFChange A numeric value representing the weighted mean frequency of methy-
lation changes in non-island structures.

island_meanFChange A numeric value representing the weighted mean frequency of methylation
changes in island structures.

Examples

Example data setup
data <- list(
list(rep(1,10), rep(0,5), rep(1,8)), # Tip a
list(rep(1,10), rep(0.5,5), rep(0,8)), # Tip b
list(rep(1,10), rep(0.5,5), rep(0,8)), # Tip c
list(c(rep(0,5), rep(0.5, 5)), c(0, 0, 1, 1, 1), c(0.5, 1, rep(0, 6)))) # Tip d

tree <- "((a:1.5,b:1.5):2,(c:2,d:2):1.5);"

38 mean_CherryFreqsChange_i

index_islands <- c(1,3)
index_nonislands <- c(2)

MeanSiteFChange_cherry(data = data,
categorized_data = TRUE,
tree = tree,
index_islands = index_islands,
index_nonislands = index_nonislands)

mean_CherryFreqsChange_i

Mean Number of Significant Methylation Frequency Changes per Is-
land in Cherries

Description

Computes the mean number of significant changes per island in phylogenetic tree cherries, based
on a specified p-value threshold.

Usage

mean_CherryFreqsChange_i(
data,
categorized_data = FALSE,
index_islands,
tree,
pValue_threshold

)

Arguments

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

index_islands A numeric vector specifying the indices of islands to analyze.

mean_TreeFreqsChange_i 39

tree A rooted binary tree in Newick format (character string) or as an ape phylo
object.

pValue_threshold

A numeric value between 0 and 1 that serves as the threshold for statistical
significance in the chi-squared test.

Details

The function uses simulate.p.value = TRUE in chisq.test to compute the p-value via Monte
Carlo simulation to improve reliability regardless of whether the expected frequencies meet the
assumptions of the chi-squared test (i.e., expected counts of at least 5 in each category).

Value

A data frame containing the same information as pValue_CherryFreqsChange_i, but with addi-
tional columns indicating whether p-values are below the threshold (significant changes) and the
mean frequency of significant changes per island.

Examples

tree <- "((d:1,e:1):2,a:2);"
data <- list(

#Tip 1
list(c(rep(1,9), rep(0,1)),

c(rep(0,9), 1),
c(rep(0,9), rep(0.5,1))),

#Tip 2
list(c(rep(0,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(1,9), rep(0,1))),

#Tip 3
list(c(rep(1,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(0,9), rep(0.5,1))))

index_islands <- c(1,3)
mean_CherryFreqsChange_i(data, categorized_data = TRUE,

index_islands, tree, pValue_threshold = 0.05)

mean_TreeFreqsChange_i

Mean Number of Significant Frequency Changes per Island Across all
Tree Tips

40 mean_TreeFreqsChange_i

Description

This function analyzes the frequency changes of methylation states (unmethylated, partially methy-
lated, methylated) across tree tips for a given set of islands. It performs a chi-squared test for
each island to check for significant changes in frequencies across tips and returns the proportion of
islands showing significant changes.

Usage

mean_TreeFreqsChange_i(
tree,
data,
categorized_data = FALSE,
index_islands,
pValue_threshold,
testing = FALSE

)

Arguments

tree A phylogenetic tree object, typically of class phylo, containing tip labels.

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

index_islands A vector of indices of genomic structures corresponding to islands in data.
pValue_threshold

A numeric value between 0 and 1 that serves as the threshold for statistical
significance in the chi-squared test.

testing Logical defaulted to FALSE. TRUE for testing output.

Details

The function uses simulate.p.value = TRUE in chisq.test to compute the p-value via Monte
Carlo simulation to improve reliability regardless of whether the expected frequencies meet the
assumptions of the chi-squared test (i.e., expected counts of at least 5 in each category).

Throws errors if:

• The tree is not valid.

pValue_CherryFreqsChange_i 41

• data is not structured correctly across tips.

• index_islands is empty.

• pValue_threshold is not between 0 and 1.

Value

A numeric value representing the mean proportion of islands with significant frequency changes
across tips.

Examples

Example of usage:

tree <- "((d:1,e:1):2,a:2);"

data <- list(
#Tip 1
list(c(rep(1,9), rep(0,1)),

c(rep(0,9), 1),
c(rep(0,9), rep(0.5,1))),

#Tip 2
list(c(rep(1,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(1,9), rep(0,1))),

#Tip 3
list(c(rep(1,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(0,9), rep(0.5,1))))

index_islands <- c(1,3)

mean_TreeFreqsChange_i(tree,
data, categorized_data = TRUE,
index_islands,
pValue_threshold = 0.05)

pValue_CherryFreqsChange_i

Compute p-Values for Methylation Frequency Changes in Cherries

Description

Calculates p-values for changes in methylation frequency between pairs of cherry tips in a phylo-
genetic tree. A cherry is a pair of leaf nodes (also called tips or terminal nodes) in a phylogenetic
tree that share a direct common ancestor.

42 pValue_CherryFreqsChange_i

Usage

pValue_CherryFreqsChange_i(
data,
categorized_data = FALSE,
index_islands,
tree,
input_control = TRUE

)

Arguments

data A list containing methylation states at tree tips for each genomic structure (e.g.,
island/non-island). The data should be structured as data[[tip]][[structure]],
where each structure has the same number of sites across tips. The input data
must be prefiltered to ensure CpG sites are represented consistently across dif-
ferent tips. Each element contains the methylation states at the sites in a given tip
and structure represented as 0, 0.5 or 1 (for unmethylated, partially-methylated
and methylated). If methylation states are not represented as 0, 0.5, 1 they are
categorized as 0 when value equal or under 0.2 0.5 when value between 0.2 and
0.8 and 1 when value over 0.8. For customized categorization thresholds use
categorize_siteMethSt

categorized_data

Logical defaulted to FALSE. TRUE to skip redundant categorization when methy-
lation states are represented as 0, 0.5, and 1.

index_islands A numeric vector specifying the indices of islands to analyze.

tree A rooted binary tree in Newick format (character string) or as an ape phylo
object with minimum 2 tips.

input_control Logical; if TRUE, validates input.

Details

The function uses simulate.p.value = TRUE in chisq.test to compute the p-value via Monte
Carlo simulation to improve reliability regardless of whether the expected frequencies meet the
assumptions of the chi-squared test (i.e., expected counts of at least 5 in each category).

Value

A data frame containing tip pair information (first tip name, second tip name, first tip index, second
tip index, distance) and one column per island with the p-values from the chi-squared tests.

Examples

Example with hypothetical tree and data structure

tree <- "((d:1,e:1):2,a:2);"
data <- list(

#Tip 1
list(c(rep(1,9), rep(0,1)),

simulate_evolData 43

c(rep(0,9), 1),
c(rep(0,9), rep(0.5,1))),

#Tip 2
list(c(rep(0,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(1,9), rep(0,1))),

#Tip 3
list(c(rep(1,9), rep(0.5,1)),

c(rep(0.5,9), 1),
c(rep(0,9), rep(0.5,1))))

index_islands <- c(1,3)

pValue_CherryFreqsChange_i(data, categorized_data = TRUE, index_islands, tree)

simulate_evolData Simulate Data Evolution along a Tree

Description

This function simulates methylation data evolution along a tree. Either by simulating data at the
root of the provided evolutionary tree (if infoStr is given) or by using pre-existing data at the root
(if rootData is given) and letting it evolve along the tree.

Usage

simulate_evolData(
infoStr = NULL,
rootData = NULL,
tree = NULL,
params = NULL,
dt = 0.01,
CFTP = FALSE,
CFTP_step_limit = 327680000,
n_rep = 1,
only_tip = TRUE

)

Arguments

infoStr A data frame containing columns ’n’ for the number of sites, and ’globalState’
for the favoured global methylation state. If customized initial equilibrium
frequencies are given, it also contains columns ’u_eqFreq’, ’p_eqFreq’, and
’m_eqFreq’ with the equilibrium frequency values for unmethylated, partially
methylated, and methylated.

rootData The output of the simulate_initialData()$data function. It represents the initial
data at the root of the evolutionary tree.

44 simulate_evolData

tree A string in Newick format representing the evolutionary tree.

params Optional data frame with specific parameter values. Structure as in get_parameterValues()
output. If not provided, default values will be used.

dt Length of time step for Gillespie’s Tau-Leap Approximation (default is 0.01).

CFTP Default FALSE. TRUE for calling cftp algorithm to set root state according to
model equilibrium (Note that current implementation neglects IWE process).

CFTP_step_limit

when CFTP = TRUE, maximum number of steps before applying an approxima-
tion method (default 327680000 corresponding to size of CFTP info of approx
6.1 GB).

n_rep Number of replicates to simulate (default is 1).

only_tip Logical indicating whether to extract data only for tips (default is TRUE, FALSE
to extract the information for all the tree branches).

Value

A list containing the parameters used ($params), the length of the time step used for the Gillespie’s
tau-leap approximation ($dt, default 0.01), the tree used ($tree). simulated data and the simulated
data ($data). In $data, each list element corresponds to a simulation replicate.

• If only_tip is TRUE: In $data, each list element corresponds to a simulation replicate. Each
replicate includes one list per tree tip, each containing:

– The name of each tip in the simulated tree (e.g. replicate 2, tip 1: $data[[2]][[1]]$name).
– A list with the sequence of methylation states for each tip-specific structure (e.g. replicate

1, tip 2, 3rd structure: $data[[1]][[2]]$seq[[3]]. The methylation states are encoded
as 0 for unmethylated, 0.5 for partially methylated, and 1 for methylated.

• If only_tip is FALSE, $data contains 2 lists:

– $data$branchInTree: a list in which each element contains the information of the rela-
tionship with other branches:

* Index of the parent branch (e.g. branch 2): $data$branchInTree[[2]]$parent_index)

* Index(es) of the offspring branch(es) (e.g. branch 1 (root)): $data$branchInTree[[1]]$offspring_index)
– $data$sim_data: A list containing simulated data. Each list element corresponds to a

simulation replicate. Each replicate includes one list per tree branch, each containing:

* The name of each branch in the simulated tree. It’s NULL for the tree root and
inner nodes, and the name of the tips for the tree tips. (e.g. replicate 2, branch 1:
$data$sim_data[[2]][[1]]$name)

* Information of IWE events on that branch. It’s NULL for the tree root and FALSE
for the branches in which no IWE event was sampled, and a list containing $islands
with the index(ces) of the island structure(s) that went through the IWE event and
$times for the branch time point(s) in which the IWE was sampled. (e.g. replicate
1, branch 3: $data$sim_data[[1]][[3]]$IWE)

* A list with the sequence of methylation states for each structure (the index of the list
corresponds to the index of the structures). The methylation states are encoded as 0
for unmethylated, 0.5 for partially methylated, and 1 for methylated. (e.g. replicate
3, branch 2, structure 1: $data$sim_data[[3]][[2]]$seq[[1]])

simulate_initialData 45

* A list with the methylation equilibrium frequencies for each structure (the index of
the list corresponds to the index of the structures). Each structure has a vector with 3
values, the first one corresponding to the frequency of unmethylated, the second one
to the frequency of partially methylated, and the third one to the frequency of methy-
lated CpGs. (e.g. replicate 3, branch 2, structure 1: $data$sim_data[[3]][[2]]$eqFreqs[[1]])

Examples

Example data
infoStr <- data.frame(n = c(10, 100, 10), globalState = c("M", "U", "M"))

Simulate data evolution along a tree with default parameters
simulate_evolData(infoStr = infoStr, tree = "(A:0.1,B:0.1);")

Simulate data evolution along a tree with custom parameters
custom_params <- get_parameterValues()
custom_params$iota <- 0.5
simulate_evolData(infoStr = infoStr, tree = "(A:0.1,B:0.1);", params = custom_params)

simulate_initialData Simulate Initial Data

Description

This function simulates initial data based on the provided information and parameters.

Usage

simulate_initialData(
infoStr,
params = NULL,
CFTP = FALSE,
CFTP_step_limit = 327680000

)

Arguments

infoStr A data frame containing columns ’n’ for the number of sites, and ’globalState’
for the favoured global methylation state. If customized equilibrium frequen-
cies are given, it also contains columns ’u_eqFreq’, ’p_eqFreq’ and ’m_eqFreq’
with the equilibrium frequency values for unmethylated, partially methylated
and methylated.

params Optional data frame with specific parameter values.

CFTP Default FALSE. TRUE for calling cftp algorithm to set root state according to
model equilibrium (Note that current implementation neglects IWE process).
Structure as in get_parameterValues() output. If not provided, default values
will be used.

46 singleStructureGenerator

CFTP_step_limit

when CFTP = TRUE, maximum number of steps before applying an approxima-
tion method (default 327680000 corresponding to size of CFTP info of approx
6.1 GB).

Details

The function performs several checks on the input data and parameters to ensure they meet the
required criteria and simulates DNA methylation data.

Value

A list containing the simulated data ($data) and parameters ($params).

Examples

Example data
infoStr <- data.frame(n = c(10, 100, 10), globalState = c("M", "U", "M"))

Simulate initial data with default parameters
simulate_initialData(infoStr = infoStr)

Simulate data evolution along a tree with custom parameters
custom_params <- get_parameterValues()
custom_params$iota <- 0.5
simulate_initialData(infoStr = infoStr, params = custom_params)

singleStructureGenerator

singleStructureGenerator

Description

an R6 class representing a single genomic structure

Public fields

testing_output Public attribute: Testing output for initialize

Methods

Public methods:
• singleStructureGenerator$init_neighbSt()

• singleStructureGenerator$initialize_ratetree()

• singleStructureGenerator$new()

• singleStructureGenerator$set_myCombiStructure()

• singleStructureGenerator$get_seq()

singleStructureGenerator 47

• singleStructureGenerator$get_seqFirstPos()

• singleStructureGenerator$get_seq2ndPos()

• singleStructureGenerator$get_seqLastPos()

• singleStructureGenerator$get_seq2ndButLastPos()

• singleStructureGenerator$get_combiStructure_index()

• singleStructureGenerator$update_interStr_firstNeighbSt()

• singleStructureGenerator$update_interStr_lastNeighbSt()

• singleStructureGenerator$get_eqFreqs()

• singleStructureGenerator$SSE_evol()

• singleStructureGenerator$get_transMat()

• singleStructureGenerator$IWE_evol()

• singleStructureGenerator$get_alpha_pI()

• singleStructureGenerator$get_beta_pI()

• singleStructureGenerator$get_alpha_mI()

• singleStructureGenerator$get_beta_mI()

• singleStructureGenerator$get_alpha_pNI()

• singleStructureGenerator$get_beta_pNI()

• singleStructureGenerator$get_alpha_mNI()

• singleStructureGenerator$get_beta_mNI()

• singleStructureGenerator$get_alpha_Ri()

• singleStructureGenerator$get_iota()

• singleStructureGenerator$get_Ri_values()

• singleStructureGenerator$get_Q()

• singleStructureGenerator$get_siteR()

• singleStructureGenerator$get_neighbSt()

• singleStructureGenerator$update_ratetree_otherStr()

• singleStructureGenerator$get_Qi()

• singleStructureGenerator$get_seqSt_leftneighb()

• singleStructureGenerator$get_seqSt_rightneighb()

• singleStructureGenerator$cftp_all_equal()

• singleStructureGenerator$set_seqSt_update_neighbSt()

• singleStructureGenerator$reset_seq()

• singleStructureGenerator$clone()

Method init_neighbSt(): Public method: Initialization of $neighbSt
This fuction initiates each CpG position $neighbSt as encoded in $mapNeighbSt_matrix
It uses $update_neighbSt which updates for each sequence index, the neighbSt of left and right
neighbors This means that it updates position 2, then 1 and 3, then 2 and 4.. Therefore, if the com-
biStructure instance has several singleStr instances within and the first has length 1, the $neighbSt
of that position of the first singleStr instance is initialized when the method is called from the
second singleStr instance
Positions at the edge of the entire simulated sequence use their only neighbor as both neighbors.

Usage:

48 singleStructureGenerator

singleStructureGenerator$init_neighbSt()

Returns: NULL

Method initialize_ratetree(): Public method: Initialization of $ratetree
This function initializes $ratetree

Usage:
singleStructureGenerator$initialize_ratetree()

Returns: NULL

Method new(): Create a new singleStructureGenerator object.
Note that this object is typically generated withing a combiStructureGenerator object.

Usage:
singleStructureGenerator$new(
globalState,
n,
eqFreqs = NULL,
combiStr = NULL,
combiStr_index = NULL,
params = NULL,
testing = FALSE

)

Arguments:
globalState Character. Structure’s favored global state: "M" for methylated (island struc-

tures) / "U" for unmethylated (non-island structures).
n Numerical Value. Number of CpG positions
eqFreqs Default NULL. When given: numerical vector with structure’s methylation state equi-

librium frequencies (for unmethylated, partially methylated and methylated)
combiStr Default NULL. When initiated from combiStructureGenerator: object of class com-

biStructureGenerator containing it
combiStr_index Default NULL. When initiated from combiStructureGenerator: index in Ob-

ject of class combiStructureGenerator
params Default NULL. When given: data frame containing model parameters
testing Default FALSE. TRUE for writing in public field of new instance $testing_output

Returns: A new singleStructureGenerator object.

Method set_myCombiStructure(): Public method: Set my_combiStructure. Assigns given
combi instance to private field my_combiStructure

Usage:
singleStructureGenerator$set_myCombiStructure(combi)

Arguments:
combi instance of combiStructureGenerator

Returns: NULL

Method get_seq(): Public method: Get object’s methylation state sequence
Encoded with 1 for unmethylated, 2 for partially methylated and 3 for methylated

singleStructureGenerator 49

Usage:
singleStructureGenerator$get_seq()

Returns: vector with equilibrium frequencies of unmethylated, partially methylated and methy-
lated

Method get_seqFirstPos(): Public method: Get first sequence position methylation state

Usage:
singleStructureGenerator$get_seqFirstPos()

Returns: numerical encoding of first position’s methylation state

Method get_seq2ndPos(): Public method: Get second sequence position methylation state

Usage:
singleStructureGenerator$get_seq2ndPos()

Returns: numerical encoding of second position’s methylation state. NULL if position does
not exist

Method get_seqLastPos(): Public method: Get first sequence position methylation state

Usage:
singleStructureGenerator$get_seqLastPos()

Returns: numerical encoding of first position’s methylation state

Method get_seq2ndButLastPos(): Public method: Get second but last sequence position
methylation state

Usage:
singleStructureGenerator$get_seq2ndButLastPos()

Returns: numerical encoding of second but last position’s methylation state. NULL if position
does not exist

Method get_combiStructure_index(): Public method: Get index in object of class com-
biStructureGenerator

Usage:
singleStructureGenerator$get_combiStructure_index()

Returns: index in object of class combiStructureGenerator

Method update_interStr_firstNeighbSt(): Public method: Update neighbSt of next sin-
gleStructureGenerator object within combiStructureGenerator object
This function is used when the last $seq position of a singleStructureGenerator object changes
methylation state to update the neighbSt position

Usage:
singleStructureGenerator$update_interStr_firstNeighbSt(
leftNeighb_seqSt,
rightNeighb_seqSt

)

Arguments:

50 singleStructureGenerator

leftNeighb_seqSt $seq state of left neighbor (left neighbor is in previous singleStructureGen-
erator object)

rightNeighb_seqSt $seq state of right neighbor

Returns: NULL

Method update_interStr_lastNeighbSt(): Public method: Update neighbSt of previous
singleStructureGenerator object within combiStructureGenerator object

Usage:
singleStructureGenerator$update_interStr_lastNeighbSt(
leftNeighb_seqSt,
rightNeighb_seqSt

)

Arguments:
leftNeighb_seqSt $seq state of right neighbor (left neighbor is in next singleStructureGener-

ator object)
rightNeighb_seqSt $seq state of right neighbor

Returns: NULL

Method get_eqFreqs(): Public method: Get object’s equilibrium Frequencies

Usage:
singleStructureGenerator$get_eqFreqs()

Returns: vector with equilibrium frequencies of unmethylated, partially methylated and methy-
lated

Method SSE_evol(): Public method. Simulate how CpG dinucleotide methylation state changes
due to the SSE process along a time step of length dt

Usage:
singleStructureGenerator$SSE_evol(dt, testing = FALSE)

Arguments:
dt time step length.
testing logical value for testing purposes. Default FALSE.

Returns: default NULL. If testing TRUE it returns a list with the debugNov3.outnumber of
events sampled and a dataframe with the position(s) affected, new state and old methylation
state.

Method get_transMat(): Public Method. Get a transition matrix

Usage:
singleStructureGenerator$get_transMat(
old_eqFreqs,
new_eqFreqs,
info,
testing = FALSE

)

Arguments:

singleStructureGenerator 51

old_eqFreqs numeric vector with 3 frequency values (for old u, p and m)
new_eqFreqs numeric vector with 3 frequency values (for new u, p and m)
info character string to indicate where the method is being called
testing logical value for testing purposes. Default FALSE.

Details: Given a tripple of old equilibrium frequencies and new equilibrium frequencies, gen-
erates the corresponding transition matrix.

Returns: transMat. The transition matrix. If testing = TRUE it returns a list. If there was a
change in the equilibrium frequencies the list contains the following 7 elements, if not it contains
the first 3 elements:
transMat transition matrix
case The applied case.

Method IWE_evol(): Public Method. Simulate IWE Events
Simulates how CpG Islands’ methylation state frequencies change and simultaneous sites change
methylation state along a branch of length t according to the SSE-IWE model.

Usage:
singleStructureGenerator$IWE_evol(testing = FALSE)

Arguments:

testing logical value for testing purposes. Default FALSE.

Details: The function checks if the methylation equilibrium frequencies (eqFreqs) and se-
quence observed frequencies (obsFreqs) change after the IWE event. If there is a change in
either frequencies, the corresponding change flag eqFreqsChange in the infoIWE list will be
set to TRUE.

Returns: If testing = TRUE it returns a list. If there was a change in the equilibrium frequencies
the list contains the following 7 elements, if not it contains the first 3 elements:
eqFreqsChange logical indicating if there was a change in the equilibrium frequencies.
old_eqFreqs Original equilibrium frequencies before the IWE event.
new_eqFreqs New equilibrium frequencies after the IWE event.
old_obsFreqs Original observed frequencies before the IWE event.
new_obsFreqs New observed frequencies after the IWE event.
IWE_case Description of the IWE event case.
Mk Transition matrix used for the IWE event.

Method get_alpha_pI(): Public Method.

Usage:
singleStructureGenerator$get_alpha_pI()

Returns: Model parameter alpha_pI for sampling island equilibrium frequencies

Method get_beta_pI(): Public Method.

Usage:
singleStructureGenerator$get_beta_pI()

Returns: Model parameter for sampling island equilibrium frequencies

52 singleStructureGenerator

Method get_alpha_mI(): Public Method.

Usage:
singleStructureGenerator$get_alpha_mI()

Returns: Model parameter for sampling island equilibrium frequencies

Method get_beta_mI(): Public Method.

Usage:
singleStructureGenerator$get_beta_mI()

Returns: Model parameter for sampling island equilibrium frequencies

Method get_alpha_pNI(): Public Method.

Usage:
singleStructureGenerator$get_alpha_pNI()

Returns: Model parameter for sampling non-island equilibrium frequencies

Method get_beta_pNI(): Public Method.

Usage:
singleStructureGenerator$get_beta_pNI()

Returns: Model parameter for sampling non-island equilibrium frequencies

Method get_alpha_mNI(): Public Method.

Usage:
singleStructureGenerator$get_alpha_mNI()

Returns: Model parameter for sampling non-island equilibrium frequencies

Method get_beta_mNI(): Public Method.

Usage:
singleStructureGenerator$get_beta_mNI()

Returns: Model parameter for sampling non-island equilibrium frequencies

Method get_alpha_Ri(): Public Method.

Usage:
singleStructureGenerator$get_alpha_Ri()

Returns: Model parameter for gamma distribution shape to initialize the 3 $Ri_values

Method get_iota(): Public Method.

Usage:
singleStructureGenerator$get_iota()

Returns: Model parameter for gamma distribution expected value to initialize the 3 $Ri_values

Method get_Ri_values(): Public Method.

Usage:
singleStructureGenerator$get_Ri_values()

singleStructureGenerator 53

Returns: The 3 $Ri_values

Method get_Q(): Public Method.

Usage:
singleStructureGenerator$get_Q(
siteR = NULL,
neighbSt = NULL,
oldSt = NULL,
newSt = NULL

)

Arguments:

siteR default NULL. Numerical value encoding for the sites rate of independent SSE (1, 2 or
3)

neighbSt default NULL. Numerical value encoding for the sites neighbouring state (as in map-
NeighbSt_matrix)

oldSt default NULL. Numerical value encoding for the sites old methylation state (1, 2 or 3)
newSt default NULL. Numerical value encoding for the sites new methylation state (1, 2 or 3)

Returns: With NULL arguments, the list of rate matrices. With non NULL arguments, the
corresponding rate of change.

Method get_siteR(): Public Method.

Usage:
singleStructureGenerator$get_siteR(index = NULL)

Arguments:

index default NULL. Numerical value for the index of the CpG position within the singleStr
instance

Returns: with NULL arguments, siteR vector. non NULL arguments, the corresponding siteR

Method get_neighbSt(): Public Method.

Usage:
singleStructureGenerator$get_neighbSt(index = NULL)

Arguments:

index default NULL. Numerical value for the index of the CpG position within the singleStr
instance

Returns: with NULL arguments, neighbSt vector. non NULL arguments, the corresponding
neighbSt

Method update_ratetree_otherStr(): Public Method. Update ratetree from another sin-
gleStructure instance

Usage:
singleStructureGenerator$update_ratetree_otherStr(position, rate)

Arguments:

position Numerical value for the index of the CpG position within the singleStr instance

54 singleStructureGenerator

rate Rate of change to asign to that position

Returns: NULL

Method get_Qi(): Public Method. Get list of matrices for SSE process

Usage:
singleStructureGenerator$get_Qi(siteR = NULL, oldSt = NULL, newSt = NULL)

Arguments:
siteR default NULL. Numerical value encoding for the sites rate of independent SSE (1, 2 or

3)
oldSt default NULL. Numerical value encoding for the sites old methylation state (1, 2 or 3)
newSt default NULL. Numerical value encoding for the sites new methylation state (1, 2 or 3)

Returns: With NULL arguments, the list of SSEi rate matrices. With non NULL arguments,
the corresponding rate of change.

Method get_seqSt_leftneighb(): Public Method. Decode methylation state of left neighbor
form owns neighbSt

Usage:
singleStructureGenerator$get_seqSt_leftneighb(index)

Arguments:
index Integer index value for the CpG position within the singleStr instance

Returns: decoded methylation state ($seq) of left neighbor (1, 2 or 3 for unmethylated, partially
methylated or methylated)

Method get_seqSt_rightneighb(): Public Method. Decode methylation state of left neighbor
form owns neighbSt

Usage:
singleStructureGenerator$get_seqSt_rightneighb(index)

Arguments:
index Integer index value for the CpG position within the singleStr instance

Returns: decoded methylation state ($seq) of right neighbor (1, 2 or 3 for unmethylated, par-
tially methylated or methylated)

Method cftp_all_equal(): Public Method. Make a singleStructure with the same segment
lengths and parameters as the focal one but where all states are m or u

Usage:
singleStructureGenerator$cftp_all_equal(state, testing = FALSE)

Arguments:
state Character value "U" or "M"
testing default FALSE. TRUE for testing output

Returns: right neighbSt

Method set_seqSt_update_neighbSt(): Public Method. Set the methylation state of a se-
quence position and update the neighbor’s neighbSt. It does NOT update RATETREE

treeMultiRegionSimulator 55

Usage:
singleStructureGenerator$set_seqSt_update_neighbSt(
index,
newSt,
testing = FALSE

)

Arguments:

index Numerical value for the index of the CpG position within the singleStr instance
newSt Numerical value encoding for the sites new methylation state (1, 2 or 3)
testing default FALSE. TRUE for testing output

Returns: NULL when testing FALSE. Testing output when testing TRUE.

Method reset_seq(): Public Method. Resets the sequence states by resampling according to
the instance’s equilibrium frequencies.

Usage:
singleStructureGenerator$reset_seq()

Returns: NULL. The sequence is updated in place.

Method clone(): The objects of this class are cloneable with this method.

Usage:
singleStructureGenerator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

treeMultiRegionSimulator

treeMultiRegionSimulator

Description

an R6 class representing the methylation state of GpGs in different genomic structures in the nodes
of a tree.

The whole CpG sequence is an object of class combiStructureGenerator. Each genomic structure in
it is contained in an object of class singleStructureGenerator.

Public fields

testing_output Public attribute: Testing output for initialize

Branch Public attribute: List containing objects of class combiStructureGenerator

branchLength Public attribute: Vector with the corresponding branch lengths of each $Branch
element

56 treeMultiRegionSimulator

Methods

Public methods:
• treeMultiRegionSimulator$treeEvol()

• treeMultiRegionSimulator$new()

• treeMultiRegionSimulator$clone()

Method treeEvol(): Simulate CpG dinucleotide methylation state evolution along a tree. The
function splits a given tree and simulates evolution along its branches. It recursively simulates
evolution in all of the subtrees in the given tree until the tree leafs

Usage:
treeMultiRegionSimulator$treeEvol(
Tree,
dt = 0.01,
parent_index = 1,
testing = FALSE

)

Arguments:
Tree String. Tree in Newick format. When called recursivelly it is given the corresponding

subtree.
dt Length of SSE time steps.
parent_index Default 1. When called recursivelly it is given the corresponding parent branch

index.
testing Default FALSE. TRUE for testing purposes.

Returns: NULL

Method new(): Create a new treeMultiRegionSimulator object. $Branch is a list for the tree
branches, its first element represents the tree root.
Note that one of either infoStr or rootData needs to be given. Not both, not neither.

Usage:
treeMultiRegionSimulator$new(
infoStr = NULL,
rootData = NULL,
tree = NULL,
params = NULL,
dt = 0.01,
CFTP = FALSE,
CFTP_step_limit = 327680000,
testing = FALSE

)

Arguments:
infoStr A data frame containing columns ’n’ for the number of sites, and ’globalState’ for the

favoured global methylation state. If initial equilibrium frequencies are given the dataframe
must contain 3 additional columns: ’u_eqFreq’, ’p_eqFreq’ and ’m_eqFreq’

rootData combiStructureGenerator object. When given, the simulation uses its parameter val-
ues.

validate_dataAcrossTips 57

tree tree

params Default NULL. When given: data frame containing model parameters. Note that if
rootData is not null, its parameter values are used.

dt length of the dt time steps for the SSE evolutionary process

CFTP Default FALSE. TRUE for calling cftp algorithm to set root state according to model
equilibrium (Note that current implementation neglects IWE process).

CFTP_step_limit when CFTP = TRUE, maximum number of steps before applying an ap-
proximation method (default 327680000 corresponding to size of CFTP info of approx 6.1
GB).

testing Default FALSE. TRUE for testing output.

Returns: A new treeMultiRegionSimulator object.

Method clone(): The objects of this class are cloneable with this method.

Usage:

treeMultiRegionSimulator$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

validate_dataAcrossTips

Validate Data Structure Across Tips

Description

This function ensures that data follows the required nested structure data[[tip]][[structure]],
where:

• data is a list of at least two tip elements.

• Each tip is a list of structure elements.

• Each structure contains a numeric vector of equal length across all tips.

Usage

validate_dataAcrossTips(data)

Arguments

data A list structured as data[[tip]][[structure]].

58 validate_data_cherryDist

Details

Throws errors if:

• data is not a list.

• It has fewer than two tips.

• Any tip is not a list.

• The number of structures is inconsistent across tips.

• Any structure has zero-length data at any tip.

• Structures have different site lengths across tips.

validate_data_cherryDist

Validate Structure of Input Data for Cherry Distance Computation

Description

This function checks whether the provided input data has the required structure. It ensures that the
number of tips is sufficient and that the data structure is consistent across tips and structures.

Usage

validate_data_cherryDist(cherryDist, data)

Arguments

cherryDist A data frame containing cherry pair distances, including tip indices (output from
get_cherryDist)

data A nested list representing structured data for each tip, following the format
data[[tip]][[structure]].

Details

The function performs several validation steps:

• Ensures that the number of tips in data is at least as large as the highest tip index in cherryDist.

• Checks that all tips contain at least one structure and that the number of structures is consistent
across tips.

• Verifies that within each structure, all tips have the same number of sites and no zero-length
structures.

If any of these conditions fail, the function throws an error with a descriptive message.

validate_structureIndices 59

validate_structureIndices

Validate Structure Indices for Island and Non-Island Data

Description

This function checks whether the provided indices for islands and non-islands are within the valid
range of structures in the dataset. It also warns if any indices are present in both index_islands
and index_nonislands.

Usage

validate_structureIndices(data, index_islands, index_nonislands)

Arguments

data A nested list data[[tip]][[structure]]. Assumes that the number of struc-
tures is consistent across tips and that within each structure, all tips have the
same number of sites. The number of structures is inferred from length(data[[1]]).

index_islands An integer vector specifying indices that correspond to island structures.

index_nonislands

An integer vector specifying indices that correspond to non-island structures.

Details

The funct@exportion performs the following checks:

• Ensures that all indices in index_islands and index_nonislands are within the range of
available structures.

• Throws an error if any index is out of bounds.

• Issues a warning if the same index appears in both index_islands and index_nonislands.

Value

No return value. The function stops execution if invalid indices are detected.

60 validate_tree

validate_tree Validate and Parse a Phylogenetic Tree

Description

This function checks whether the input is a valid phylogenetic tree, either as a character string in
Newick format or as an object of class phylo from the ape package. If the input is a Newick string,
it is parsed into a phylo object. The function also ensures that the tree contains at least two tips.

Usage

validate_tree(tree)

Arguments

tree A phylogenetic tree in Newick format (as a character string) or an object of class
phylo from the ape package.

• If the input is a character string, it must follow the Newick format (e.g.,
"((tip_1:1,tip_2:1):5,tip_3:6);").

• If an object of class phylo is provided, it should be a valid phylogenetic
tree.

Details

• The function first verifies that the input is either a valid phylo object or a character string.

• If the input is a Newick string, it attempts to parse it into a phylo object using ape::read.tree().

• If parsing fails, an informative error message is returned.

• The function also checks that the tree contains at least two tips, as a valid phylogenetic tree
should have at least one split.

Value

A phylo object representing the validated and parsed tree.

Index

categorize_islandGlbSt, 3
categorize_siteMethSt, 4
cftpStepGenerator, 5
chisq.test, 13, 39, 40, 42
combiStructureGenerator, 6
compare_CherryFreqs, 13
compute_fitch, 15
compute_meanCor_i, 16
compute_meanCor_ni, 17
computeFitch_islandGlbSt, 14
count_upm, 21
countSites_cherryMethDiff, 19

freqSites_cherryMethDiff, 21

get_cherryDist, 23
get_islandMeanFreqM, 24
get_islandMeanFreqP, 25
get_islandSDFreqM, 26
get_islandSDFreqP, 27
get_meanMeth_islands, 28
get_nonislandMeanFreqM, 29
get_nonislandMeanFreqP, 30
get_nonislandSDFreqM, 31
get_nonislandSDFreqP, 33
get_parameterValues, 34
get_siteFChange_cherry, 35

mean_CherryFreqsChange_i, 38
mean_TreeFreqsChange_i, 39
MeanSiteFChange_cherry, 36

pValue_CherryFreqsChange_i, 41

simulate_evolData, 43
simulate_initialData, 45
singleStructureGenerator, 46

treeMultiRegionSimulator, 55

validate_data_cherryDist, 58

validate_dataAcrossTips, 57
validate_structureIndices, 59
validate_tree, 60

61

	categorize_islandGlbSt
	categorize_siteMethSt
	cftpStepGenerator
	combiStructureGenerator
	compare_CherryFreqs
	computeFitch_islandGlbSt
	compute_fitch
	compute_meanCor_i
	compute_meanCor_ni
	countSites_cherryMethDiff
	count_upm
	freqSites_cherryMethDiff
	get_cherryDist
	get_islandMeanFreqM
	get_islandMeanFreqP
	get_islandSDFreqM
	get_islandSDFreqP
	get_meanMeth_islands
	get_nonislandMeanFreqM
	get_nonislandMeanFreqP
	get_nonislandSDFreqM
	get_nonislandSDFreqP
	get_parameterValues
	get_siteFChange_cherry
	MeanSiteFChange_cherry
	mean_CherryFreqsChange_i
	mean_TreeFreqsChange_i
	pValue_CherryFreqsChange_i
	simulate_evolData
	simulate_initialData
	singleStructureGenerator
	treeMultiRegionSimulator
	validate_dataAcrossTips
	validate_data_cherryDist
	validate_structureIndices
	validate_tree
	Index

