
anytime: Easier Date and Time Conversion
Dirk Eddelbuettel1

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA

This version was compiled on August 28, 2019

The anytime package provides functions which convert from both a num-

ber of different input variable types (integer, numeric, character, factor)

and different input formats which are tried heuristically offering a power-

ful and versatile date and time converter that (generally) requires no user

input and operates autonomously.

Motivation

R excels at computing with dates, and times. Using a typed repre-

sentation for your data is highly recommended not only because

of the functionality offered but also because of the added safety

stemming from proper representation.

But there is a small nuisance cost in interactive work as well

as in programming. Users must have told as.POSIXct() about

a million times that the origin is (of course) the epoch. Do we

really have to say it a million more times? Similarly, when parsing

dates that are some variant of the common YYYYMMDD format, do

we really have to manually convert from integer or numeric or

factor or ordered to character? Having one of several common

separators and/or date formats (YYYY-MM-DD, YYYY/MM/DD,

YYYYMMDD, YYYY-mon-DD and so on, with or without times), do

we really need a format string? Or could a smart converter function

do this for us?

The anytime() function aims to provide such a general purpose

converter returning a proper POSIXct (or Date) object no matter

the input (provided it was parseable), relying on Boost Date_Time

for the (efficient, performant) conversion. anydate() is an addi-

tional wrapper returning a Date object instead. utctime() and

utcdate() are two variants which interpret input as coordinated

universal time (UTC), i.e. free of any timezone.

Examples

We set up the R environment and display for the examples below.

Note that the package caches the (local) timezone information

(and anytime:::setTZ() can be used to reset this value later).

Sys.setenv(TZ=anytime:::getTZ()) # TZ helper

library(anytime) # caches TZ info

options(width=50, # column width

digits.secs=6) # fractional secs

From Integer, Numeric, Factor or Ordered. For numeric dates in

the range of the (numeric) yyyymmdd format, we use anydate().

integer

anydate(20160101L + 0:2)

[1] "2016-01-01" "2016-01-02" "2016-01-03"

numeric

anydate(20160101 + 0:2)

[1] "2016-01-01" "2016-01-02" "2016-01-03"

Numeric input also works for datetimes if its range corresponds

to the range of as.numeric() values of POSIXct variables:

integer

anytime(1451628000L + 0:2)

[1] "2016-01-01 00:00:00 CST"

[2] "2016-01-01 00:00:01 CST"

[3] "2016-01-01 00:00:02 CST"

numeric

anytime(1451628000 + 0:2)

[1] "2016-01-01 00:00:00 CST"

[2] "2016-01-01 00:00:01 CST"

[3] "2016-01-01 00:00:02 CST"

This is a change from version 0.3.0; the old behaviour (which

was not fully consistent in how it treated numeric input values, but

convenient for input in the ranges shown here) can be enabled

via either an argument to the function or a global options, see

help(anytime) for details:

integer

anytime(20160101L + 0:2, oldHeuristic=TRUE)

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

numeric

anytime(20160101 + 0:2, oldHeuristic=TRUE)

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

In general, it is now preferred to use anydate() on values in

this range (or resort to using oldHeuristics=TRUE as shown).

Factor or Ordered. Factor variables and their order variant are also

supported directly.

factor

anytime(as.factor(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

ordered

anytime(as.ordered(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Note that factor and ordered variables may appear to be like

numeric variables, they are in fact converted to character first and

treated just like character input (described in the next section).

Character: Simple. Character input is supported in a variety of

formats. We first show simple formats.

https://cran.r-project.org/package=anytime anytime Vignette | August 28, 2019 | 1–4

Dates: Character

anytime(as.character(20160101 + 0:2))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Dates: alternate formats

anytime(c("20160101", "2016/01/02", "2016-01-03"))

[1] "2016-01-01 CST" "2016-01-02 CST"

[3] "2016-01-03 CST"

Character: ISO. ISO8661 date(time) formats are supported with

both ‘T’ and a space as separator of date and time.

Datetime: ISO with/without fractional seconds

anytime(c("2016-01-01 10:11:12",

"2016-01-01T10:11:12.345678"))

[1] "2016-01-01 10:11:12.000000 CST"

[2] "2016-01-01 10:11:12.345678 CST"

Character: Textual month formats. Date formats with month ab-

breviations are supported in a number of common orderings.

ISO style

anytime(c("2016-Sep-01 10:11:12",

"Sep/01/2016 10:11:12",

"Sep-01-2016 10:11:12"))

[1] "2016-09-01 10:11:12 CDT"

[2] "2016-09-01 10:11:12 CDT"

[3] "2016-09-01 10:11:12 CDT"

Datetime: Mixed format

(cf http://stackoverflow.com/questions/39259184)

anytime(c("Thu Sep 01 10:11:12 2016",

"Thu Sep 01 10:11:12.345678 2016"))

[1] "2016-09-01 10:11:12.000000 CDT"

[2] "2016-09-01 10:11:12.345678 CDT"

Character: Dealing with DST. This shows an important aspect.

When not working in localtime (by overriding to UTC) the change in

difference to UTC is correctly covered (which the underlying Boost

Date_Time library does not do by itself).

Datetime: pre/post DST

anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"))

[1] "2016-01-31 12:13:14 CST"

[2] "2016-08-31 12:13:14 CDT"

important: catches change

anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"), tz="UTC")

[1] "2016-01-31 18:13:14 UTC"

[2] "2016-08-31 17:13:14 UTC"

Technical Details

The actual parsing and conversion is done by two different Boost

libraries. First, the top-level R function checks the input argument

type and branches on date or datetime types. All other types get

handed to a function using Boost lexical_cast to convert from any-

thing numeric to a string representation. This textual representation

is then parsed by Boost Date_Time to create the corresponding date,

or datetime, type. (There are also a number of special cases where

numeric values are directly converted; see below for a discussion.)

We use the BH package (Eddelbuettel et al., 2019a) to access these

Boost libraries, and rely on Rcpp (Eddelbuettel and François, 2011;

Eddelbuettel, 2013; Eddelbuettel et al., 2019b) for a seamless C++

interface to and from R.

The Boost Date_Time library is addressing the need for parsing

date and datetimes from text. It permits us to loop over a suitably

large number of candidate formats with considerable ease. The for-

mats are generally variants of the ISO 8601 date format, i.e., of the

YYYY-MM-DD ordering. We also allow for textual representation of

months, e.g., ‘Jan’ for January. This feature is not internationalised.

The list of current formats can be retrieved by the

getFormats() function. Users can also add to this list at run-

time by calling addFormats(), as well as removing formats. User-

provided formats are tried before the formats supplied by the pack-

age.

fmts <- getFormats()

length(fmts)

[1] 83

head(fmts,10)

[1] "%Y-%m-%d %H:%M:%S%f" "%Y-%m-%e %H:%M:%S%f"

[3] "%Y-%m-%d %H%M%S%f" "%Y-%m-%e %H%M%S%f"

[5] "%Y/%m/%d %H:%M:%S%f" "%Y/%m/%e %H:%M:%S%f"

[7] "%Y%m%d %H%M%S%f" "%Y%m%d %H:%M:%S%f"

[9] "%m/%d/%Y %H:%M:%S%f" "%m/%e/%Y %H:%M:%S%f"

tail(fmts,10)

[1] "%d-%b-%Y" "%e-%b-%Y" "%Y-%B-%d" "%Y-%B-%e"

[5] "%Y%B%d" "%Y%B%e" "%B/%d/%Y" "%B/%e/%Y"

[9] "%B-%d-%Y" "%B-%e-%Y"

As a fallback for, e.g., different behavior on Windows where

Boost does not consult the TZ environment variable, and to be

generally as close as possible to parsing by the R language and

system, we also support the parser from R itself. As R does not

expose this part of its API at the C level, we use the Rcpp package

(Eddelbuettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel

et al., 2019b). This code path is enabled when useR=TRUE is used.

Output Formats

A related topic is faithful and easy to read representation of datetime

objects in output, i.e., formatting and printing such objects.

In the spirit of no configuration used on the parsing side, for-

mating support is provided via several functions. These all follow

different known standards and are accessible by the name of the

standard, or, in one case, the non-standard convention. All return

a a character representation.

pt <- anytime("2016-01-31 12:13:14.123456")

iso8601(pt)

[1] "2016-01-31T12:13:14"

rfc2822(pt)

[1] "Sun, 31 Jan 2016 12:13:14.123456 -0600"

rfc3339(pt)

[1] "2016-01-31T12:13:14.123456-0600"

yyyymmdd(pt)

[1] "20160131"

2 | https://cran.r-project.org/package=anytime Eddelbuettel

Table 1. Comparison of anytime and base R to fasttime

test replications elapsed relative

anytime 1e+05 16.556 20.515

baseR 1e+05 15.692 19.445

fasttime 1e+05 0.807 1.000

Ambiguities

The anytime package is designed to operate heuristically on a

number of plausible and sane formats. This cannot possibly cover

all conceivable cases.

North America versus the world. In general, anytime tries to gently

nudge users towards ISO 8601 order of year followed by month

and day. But for example in the United States, another prevalent

form insists on month-day-year ordering. As many users are likely

to encounter such input format, anytime accomodates this use

provided a separator is used: input with either a slash (/) or a

hyphen (-) is accepted and parsed.

Asserts

The anytime package also contains two helper functions that can as-

sist in defensive programming by validating input arguments. The

assertTime() and assertDate() functions validate if the given

input can be parsed, respectively, as Datetime or Date objects.

In case one of the inputs cannot be parsed, an error is triggered.

Otherwise the parsed input is returned invisibly.

Comparison

The anytime aims to satisfy two goal: be performant, and the

same time flexible in terms of not requiring an explicit input for-

mat. We can gauge the relative performance via several pairwise

compariosns.

Speed. The as.POSIXct() function in R provides a useful baseline

as it is also implemented in compiled code. The fastPOSIct()

function from the fasttime package (Urbanek, 2016) excels at

converting one (and only one) input format fast to a (UTC-only)

datetime object. A simple benchmark converting 100 input strings

100,000 times finds both as.POSIXct() and anytime() at very

comparable and similar performance, but well over one order of

magnitude slower that the highly-focussed fastPOSIXct(). Table

1 shows the detailed results; the underlying code can be seen in

the appendix. This result is reasonable: a highly specialised func-

tion can (yand should) outperform two (relatively fast) universal

converters. anytime() is still compelling as it easier to use than

as.POSIXct() by not requiring a format string (for formats other

than ISO 8601).

Generality. The parsedate package (Csárdi and Torvalds, 2019)

brings the very general date parsing utility from the git version

control software to R. In a similar comparison of 100 input strings

parsed 10,000 times, we find its parse_date() function to be

more than an order of magnitude slower than anytime() or

as.POSIXct()—see table 2 for the results based on the code in the

appendix. Again, this result is reasonable as the greater flexibility

of parsedate comes at a cost in performance relative to the more

restricted alternatives.

Table 2. Comparison of anytime and base R to parsedate

test replications elapsed relative

anytime 10000 1.653 1.069

baseR 10000 1.546 1.000

parsedate 10000 21.827 14.118

Table 3. Comparison of anytime to two lubridate functions

test replications elapsed relative

anytime 10000 1.652 1.000

parse_date_time 10000 12.770 7.730

ymd_hms 10000 25.162 15.231

All-in. The lubridate package (Spinu et al., 2018) is a widely-used

package for working with dates and times. It offers a very any-

wide variety of functions for working with dates and times: we

count a full 168 exported functions in the current version. Its

parser for dates and times requires at least a hint: the user has to

specify whether input is ordered as, say, year-month-day, or day-

month-year, or another form. lubridate has changed its internals

considerably over the years. Early versions did not contain com-

piled code; a C-based parser was added first, and current versions

embed the CCTZ C++ library (White and Miller, 2019) which was

first made available to R by the RcppCCTZ package (Eddelbuettel,

2019).

While lubridate is less general than anytime (in that it gener-

ally requires user input on the ordering of date elements), it is also

slower as can be seen from the results in table 3 based on the code

in the appendix. The more-widely used form (here ymd_hms()) is

over an order of magnitude slower; the less well-known function

parse_data_times() (which still requires hints) is still several

times slower as shown below.

Summary

We describe the anytime package which offers fast, convenient

and reliable date and datetime conversion for R users along with

helper functions for formatting and assertions. Different types of

input are illustrated and described in detail, and performance is

analyzed via several benchmark comparisons.

We show that the anytime package is no slower than the base

R parser, and much faster than either the most flexible parsing

alternative, or a commonly-used package in this space—all the

while freeing users from having to supply explicit formats specified

in advance. The combination of features, performance and ease-of-

use may make anytime a compelling alternative for R users parsing

and analysing dates and times.

Appendix

The benchmark results shown in tables 1, 2 and 3 are based on the

code included below, and obtained via execution under R version

3.6.1 running under Ubuntu 19.04 with Linux kernel 5.0.0-25 on

an Intel i7-8700k processor.

library(anytime)

library(rbenchmark)

library(fasttime)

Eddelbuettel anytime Vignette | August 28, 2019 | 3

inp <- rep("2019-01-02 03:04:05", 100)

res1 <- benchmark(fasttime=fastPOSIXct(inp),

baseR=as.POSIXct(inp),

anytime=anytime(inp),

replications=1e5)[, 1:4]

res1

library(parsedate)

inp <- rep("2019-01-02 03:04:05", 100)

res2 <- benchmark(parsedate=parse_date(inp),

baseR=as.POSIXct(inp),

anytime=anytime(inp),

replications=1e4)[, 1:4]

res2

suppressMessages(library(lubridate))

inp <- rep("2019-01-02 03:04:05", 100)

res3 <- benchmark(ymd_hms=ymd_hms(inp),

parse_date_time=

parse_date_time(inp,

"ymd_HMS"),

anytime=anytime(inp),

replications=1e4)[, 1:4]

res3

References

Csárdi G, Torvalds L (2019). parsedate: Recognize and Parse Dates in Various

Formats, Including All ISO 8601 Formats. R package version 1.2.0, URL

https://CRAN.R-project.org/package=parsedate.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer,

New York. doi:10.1007/978-1-4614-6868-4.

Eddelbuettel D (2019). RcppCCTZ: Rcpp Bindings for the CCTZ LibraryRcpp.

R package version 0.2.6, URL https://CRAN.R-project.org/CRAN=package=

RcppCCTZ.

Eddelbuettel D, Emerson JW, Kane MJ (2019a). BH: Boost C++ Header Files. R

package version 1.69.0-1, URL https://CRAN.R-project.org/package=BH.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++

Integration.” Journal of Statistical Software, 40(8), 1–18. doi:

10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,

Bates D (2019b). Rcpp: Seamless R and C++ Integration. R package version

1.0.1, URL https://CRAN.R-project.org/CRAN=package=Rcpp.

Spinu V, Grolemund G, Wickham H, Lyttle I, Constigan I, Law J, Mitarotonda D,

Larmarange J, Boiser J, Lee CH (2018). lubridate: Make Dealing with Dates

a Little Easier. R package version 1.7.4, URL https://CRAN.R-project.org/

CRAN=package=lubridate.

Urbanek S (2016). fasttime: Fast Utility Function for Time Parsing and Conversion.

R package version 1.0.2, URL https://CRAN.R-project.org/package=fasttime.

White B, Miller G (2019). CCTZ: A C++ library for translating between absolute

and civil times using the rules of a time zone. GitHub Repository, URL

https://github.com/google/cctz.

4 | https://cran.r-project.org/package=anytime Eddelbuettel

