
Package ‘cir’
December 3, 2024

Type Package

Title Centered Isotonic Regression and Dose-Response Utilities

Version 2.5.0

Date 2024-12-01

Description Isotonic regression (IR) and its improvement: centered isotonic regres-
sion (CIR). CIR is recommended in particular with small samples. Also, interval esti-
mates for both, and additional utilities such as plotting dose-response data. For dev ver-
sion and change history, see GitHub assaforon/cir.

License GPL-2

RoxygenNote 7.3.2

Encoding UTF-8

VignetteBuilder knitr

Suggests knitr, rmarkdown

NeedsCompilation no

Author Assaf P. Oron [cre, aut]

Maintainer Assaf P. Oron <assaf.oron@gmail.com>

Repository CRAN

Date/Publication 2024-12-03 05:00:01 UTC

Contents
cir-package . 2
cirPAVA . 3
deltaInverse . 6
doseFind . 8
DRshrink . 11
is.DRtrace . 12
isotInterval . 14
morrisCI . 16
oldPAVA . 18
plot.DRtrace . 20

1

2 cir-package

quickInverse . 22
quickIsotone . 24
slope . 27
wilsonCI . 28

Index 31

cir-package Isotonic Regression, Centered Isotonic Regression, and Dose-
Response Utilities

Description

This package revolves around centered isotonic regression (CIR), an improvement to isotonic re-
gression (IR). However, it also includes a flexible, useful implementation of IR, confidence-interval
estimates for both CIR and IR, and additional utilities for dose-response and dose-finding data.

Details

Isotonic regression (IR) is a standard nonparametric estimation method for monotone data. We
have developed an improvement to univariate IR, named centered isotonic regression (CIR). There
are heuristic and theoretical justifications to prefer CIR over IR, but first and foremost, in most
simulations it produces substantially smaller estimation error. More details appear in Oron and
Flournoy (2017).

This package implements CIR, but "along the way" an enhanced interface to univariate IR is also
available. IR’s base-R implementation isoreg is very limited, as its own help page admits. A few
other packages provide versions of IR, but to my knowledge the cir implementation offers some
unique conveniences.

In addition, Oron and Flournoy (2017) also develop theoretically-backed confidence intervals ap-
plicable to both CIR and IR. The package’s convenience wrapper quickIsotone executes CIR (or
IR if one chooses estfun = oldPAVA), and returns both point and interval estimates at the specified
x values.

Since our motivation for studying IR comes from dose-finding designs such as Up-and-Down,
there’s analogous functionality for dose-finding ("inverse") estimation of x given specified y val-
ues. In particular, quickInverse offers inverse point and interval estimates in a single call. The
package now also includes an optional bias-correction shrinkage method for such designs, informed
by more recent research (Flournoy and Oron, 2020).

The package’s focus is dose-response data with the response assumed binary (coded as 0 or 1).
Some functions might work for any input data, but others will not. In particular, the confidence
intervals are only applicable to binary-response data.

The package also includes two S3 classes, doseResponse and DRtrace. The former which is more
heavily used, is a data frame with elements x, y, wt, summarizing the dose-response information.
The latter is a "trace" or a running description of raw dose-response data, with x, y, cohort pro-
vided at the resolution of single observations. Each class has a plot method.

If you intend to use cir mostly for analysis of an Up-and-Down experiment, note that the newer
package upndown contains more convenient wrapper utilities for such usage. These wrappers use
cir functions to carry out the basic estimation and visualization tasks.

cirPAVA 3

Enjoy!

Author(s)

Assaf P. Oron.

Maintainer: Assaf P. Oron <assaf.oron.at.gmail.com>

References

Oron, A.P. and Flournoy, N., 2017. Centered Isotonic Regression: Point and Interval Estimation
for Dose-Response Studies. Statistics in Biopharmaceutical Research 9, 258-267. (author’s public
version available on arxiv.org).

Flournoy, N. and Oron, A.P., 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

cirPAVA Centered-isotonic-regression (CIR) point estimation

Description

Nonparametric forward point estimation of a monotone response (y) as a function of dose (x), using
the centered-isotonic-regression (CIR) algorithm.

Usage

cirPAVA(
y,
x = NULL,
wt = NULL,
outx = NULL,
full = FALSE,
dec = FALSE,
strict = FALSE,
interiorStrict = TRUE,
ybounds = 0:1,
adaptiveShrink = FALSE,
...

)

Arguments

y can be either of the following: y values (response rates), a DRtrace object,
doseResponse object, or valid input (potentially together with x,wt) to generate
a doseResponse object. See doseResponse help for more.

x dose levels (if not included in y).

wt weights (if not included in y).

4 cirPAVA

outx vector of x values at which predictions will be made. If NULL (default), this will
be set to the set of unique values in the x argument (or equivalently in y$x).
Non-NULL inputs are relevant only if full=TRUE.

full logical, is a more complete output desired? if FALSE (default), only a vector of
point estimates for y at outx is returned.

dec logical, is the true function is assumed to be monotone decreasing rather than
increasing? Default FALSE.

strict logical, should CIR enforce strict monotonicity by "fixing" flat intervals every-
where? Default FALSE.

interiorStrict logical, should CIR enforce strict monotonicity, but only for y values inside of
ybounds? Default TRUE. Choosing FALSE will be overridden if strict=TRUE,
and a warning will be given.

ybounds numeric vector of length 2, relevant only under the default setting of strict=FALSE,
interiorStrict=TRUE. Default 0:1. See ’Details’.

adaptiveShrink logical, should the y-values be pre-shrunk towards a dose-finding experiment’s
target? Recommended if data were obtained via an adaptive dose-finding design.
If TRUE, then must also provide a target argument that will be passed via

... Other arguments passed on to pre-processing functions.

Details

CIR is a variation of isotonic regression (IR) that shrinks IR’s constant ("flat") intervals to single
points and interpolates between these points, generating a curve that is strictly monotone every-
where except (possibly) near the boundaries.This is the underlying "engine" function implementing
CIR. For a quick and more user-friendly wrapper that provides both point and interval estimates,
use quickIsotone.

Flat intervals in the raw input data, are handled with care. Under the default setting (strict=FALSE,
interiorStrict=TRUE), flat intervals are treated as monotonicity violations, unless the y value is
on the boundary of its allowed range (default [0, 1], appropriate for binary-response data). On that
boundary, flat intervals are left unchanged.

The algorithm is documented and discussed in Oron and Flournoy (2017). The function includes an
adaptiveShrink option, to mitigate bias caused when using adaptive designs (Flournoy and Oron,
2020).

Value

under default, returns a vector of y estimates at unique x values. With full=TRUE, returns a list
of 3 doseResponse objects name output,input,shrinkage for the output data at dose levels, the
input data, and the function as fit at algorithm-generated shrinkage points, respectively.

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

cirPAVA 5

References

Oron, A.P. and Flournoy, N., 2017. Centered Isotonic Regression: Point and Interval Estimation
for Dose-Response Studies. Statistics in Biopharmaceutical Research 9, 258-267. (author’s public
version available on arxiv.org).

Flournoy, N. and Oron, A.P., 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

See Also

oldPAVA,quickIsotone; DRshrink for explanation about adaptiveShrink.

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
CIR, using the default 'quick' function that also provides CIs (default 90%).
The experiment's goal is to find the 30th percentile. We deploy the empirical bias correction.
quick1=quickIsotone(dat, adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
quick1
Use 'estfun' argument to operate the same function with old PAVA as the estimator
Here we neglect the bias correction to sharpen the old:new contrast
quick0=quickIsotone(dat,estfun=oldPAVA)
quick0

Showing the data and the fits
par(mar=c(3,3,1,1),mgp=c(2,.5,0),tcl=-0.25)
plot(dat, ylim=c(0.05,0.55), las=1) # uses plot.doseResponse()
The IR fit: a straightforward interpolation
lines(quick0$y,lty=2)

With CIR, 'quickIsotone' cannot show us the true underlying interpolation;
it only provides the estimates at requested points. Interpolation should be done between
shrinkage points, not the original design points. So we must call the full 'cirPAVA' function:

slow1 = cirPAVA(dat, full=TRUE, adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
Now, compare these 3 (the first one is wrong, b/c it interpolates from design points):
midpts = 1:4 + 0.5
approx(1:5,quick1$y, xout=midpts)$y
instead, you can just call 'quickIsotone' and specify 'outx'
quickIsotone(dat,outx=midpts , adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
approx(slow1$shrinkage$x,slow1$shrinkage$y,xout=midpts)$y # Or use 'cirPAVA'

Ok... finally plotting the CIR curve
Both flat intervals are shrunk, because neither are at y=0 or y=1
lines(slow1$shrinkage$x,slow1$shrinkage$y, lwd = 2)

Last but not least, here's the true response function
lines(seq(1,5,0.1),pweibull(seq(1,5,0.1),shape=1.1615,scale=8.4839),col=2)
legend('topleft',pch=c(NA,'X',NA,NA),lty=c(1,NA,2,1),col=c(2,1,1,1),
legend=c('True Curve','Observations','IR','CIR'), bty='n')

6 deltaInverse

deltaInverse Backend utility to calculate inverse (dose-finding) intervals, using lo-
cal inversion and the Delta method

Description

Calculate left-bound to right-bound intervals for the dose point estimates, using local slopes at
design points (places where observations exist) to invert the forward lower-upper bounds.

Usage

deltaInverse(
isotPoint,
target = (1:3)/4,
intfun = morrisCI,
conf = 0.9,
adaptiveCurve = FALSE,
minslope = 0.01,
slopeRefinement = TRUE,
finegrid = 0.05,
globalCheck = TRUE,
...

)

Arguments

isotPoint The output of an estimation function such as cirPAVA,doseFind, with the op-
tion full=TRUE. Should be at least a list of 3 doseResponse objects named
input, output, shrinkage.

target A vector of target response rate(s), for which the interval is needed. Default
(since version 2.3.0) is the 3 quartiles ((1:3) / 4). If changed to NULL, interval
will be returned for the y values of isotPoint$output.

intfun the function to be used for initial (forward) interval estimation. Default morrisCI
(see help on that function for additional options).

conf numeric, the interval’s confidence level as a fraction in (0,1). Default 0.9.

adaptiveCurve logical, should the CIs be expanded by using a parabolic curve between esti-
mation points rather than straight interpolation? Default FALSE. Switch to TRUE
recommended when adaptive design was used, and target is outside of (0.4,
0.6).

minslope minimum local slope (subsequently normalized by the dose-spacing unit) con-
sidered positive, passed on to slope. Needed to avoid unrealistically broad
intervals. Default 0.01.

slopeRefinement

(new to 2.3.0) logical: whether to allow refinement of the slope estimate, in-
cluding different slopes to the left and right of target. Default TRUE. See Details.

deltaInverse 7

finegrid a numerical value used to guide how fine the grid of x values will be during
slope estimation. Should be in (0,1) (preferably much less than 1). Default 0.05.

globalCheck (new to 2.4.0) logical: whether to allow narrowing of the bound, in case the
"global" bound (obtained via inverting the forward interval, and generally more
conservative) is narrower. Default TRUE.

... additional arguments passed on to quickIsotone

Details

This function is the "backend engine" for calculating confidence intervals for inverse (dose-finding)
estimation. Methodologically this might be the most challenging task in the package. It is expected
that most users will not interact with this function directly, but rather indirectly via the convenience
wrapper quickInverse.

The Delta method in this application boils down to dividing the distance to the forward (vertical)
bounds, by the slope, to get the left/right interval width. Both forward intervals and slopes are cal-
culated across a standard set of x values, then interpolated at horizontal cross-sections determined
by target. Slope estimates are performed by slope.

Starting version 2.3.0, by default the slope estimate is different to the right and left of target. The
intervals should now better accommodate the sharp slope changes that often happen with discrete
dose-response datasets. Operationally, the intervals are first estimated via the single-slope approach
described above. Then using a finer grid of x values, weighted-average slopes to the right and left
of the point estimate separately are calculated over the first-stage’s half-intervals. The weights are
hard-coded as quadratic (Epanechnikov).

An alternative and much simpler interval method (dubbed "global") is hard-coded into quickInverse,
and can be chosen from there as an option. It is not recommended being far too conservative, and
sometimes not existing. It is now also (since version 2.4.0) used in this function as a fallback upper
bound on interval width.

Value

two-column matrix with the left and right bounds, respectively

See Also

quickIsotone,quickInverse,isotInterval, slope; DRshrink for the shrinkage fix.

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17), wt=c(7,24,20,12,17))
The experiment's goal is to find the 30th percentile
quick1=quickIsotone(dat, adaptiveShrink = TRUE, target = 0.3)

For inverse confidence intervals "the long way",
we need a full CIR output object:
fwd1=cirPAVA(dat, full=TRUE, adaptiveShrink = TRUE, target = 0.3)
Inverse intervals.
Note: 'target' specifies the y values at which the interval is calculated.

8 doseFind

They are selected here based on the y range in which there are estimates.
yvals = c(seq(0.15, 0.3, 0.05), 0.33)
invDelta=deltaInverse(fwd1, target = yvals, adaptiveCurve = TRUE)
stop()
We added the adaptiveCurve option because the experiment's target is off-center,
and inverse-interval coverage tends to be lacking w/o that option.

Showing the data and the estimates
par(mar=c(3,3,4,1), mgp=c(2,.5,0), tcl=-0.25)
Following command uses plot.doseResponse()
plot(dat, ylim=c(0.05,0.55),

las=1, xlim=c(0,6.5), main="Inverse-Estimation CIs")

The true response function; true target is where it crosses the y=0.3 line
lines(seq(0,7,0.1), pweibull(seq(0,7,0.1), shape=1.1615, scale=8.4839), col=4, lwd=1.5)
abline(h=0.3, col=2, lwd=2, lty=3) ### The experiment's official target

Forward CIs; the "global" inverse interval just draws horizontal lines between them
To get these "global" intervals calculated for you at specific targets, choose 'delta=FALSE'
when calling quickInverse()
lines(quick1$y, lwd=1.5, col='purple')
lines(quick1$lower90conf,lty=2,col=3)
lines(quick1$upper90conf,lty=2,col=3)
Note that only the upper forward bounds intersect the horizontal line at y=0.3.
Therefore, via the "global" approach there won't be a finite CI for the target estimate.

Now, the default "local" inverse interval, which is finite for the range of estimated y values.
In particular, it is finite for y=0.3.
Note in the plot, how we make it equal to the "global" bound when the latter is narrower.
lines(invDelta[,1], yvals, lty=2, lwd=2)
lines(invDelta[,2], yvals, lty=2, lwd=2)

legend('topleft', pch=c(NA,NA,'X',NA,NA), lty=c(1,1,NA,2,2),
col=c(4,'purple', 1,1,3), lwd=c(1.5,1.5,0,2,1),
legend = c('True Curve', 'CIR Curve', 'Observations',

'Local Interval (default)',
'Forward/Global Interval'), bty='n')

doseFind Inverse (dose-finding) point estimate (e.g., estimating a percentile)

Description

Inverse ("dose-finding") point estimation of a dose (x) for a specified target y value (e.g., a response
rate), using a user-specified forward-estimation algorithm (default is CIR).

Usage

doseFind(

doseFind 9

y,
x = NULL,
wt = NULL,
estfun = cirPAVA,
target = NULL,
full = FALSE,
dec = FALSE,
extrapolate = FALSE,
errOnFlat = FALSE,
adaptiveShrink = FALSE,
starget = target[1],
tiemeth = "decide",
...

)

Arguments

y can be either of the following: y values (response rates), a 2-column matrix with
positive/negative response counts by dose, a DRtrace object or a doseResponse
object.

x dose levels (if not included in y).

wt weights (if not included in y).

estfun the name of the dose-response estimation function. Default cirPAVA.

target A vector of target response rate(s), for which the percentile dose estimate is
needed. See Note.

full logical, is a more complete output desired (relevant only for doseFind)? if FALSE
(default), only a point estimate of the dose (x) for the provided target rate is
returned.

dec (relevant only for doseFind) logical, is the true function is assumed to be mono-
tone decreasing? Default FALSE.

extrapolate logical: should extrapolation beyond the range of estimated y values be allowed?
Default FALSE.

errOnFlat logical: in case the forward estimate is completely flat making dose-finding
infeasible, should an error be returned? Under default (FALSE), NAs are returned
for the target estimate.

adaptiveShrink logical, should the y-values be pre-shrunk towards an experiment’s target? Rec-
ommended if data were obtained via an adaptive dose-finding design. See DRshrink
and the Note.

starget The shrinkage target. Defaults to target[1].

tiemeth The method to resolve ties. Default "decide", meaning the function chooses
based on context. See Details.

... Other arguments passed on to doseResponse and estfun.

10 doseFind

Details

The function works by calling estfun for forward estimation of the x-y relationship, then using
approx with the x and y roles reversed for inverse estimation. It is expected that most users will not
interact with this function directly, but rather indirectly via the convenience wrapper quickInverse.

The extrapolate option sets the rule argument for this second call:

• extrapolate=TRUE translates to rule=2, which actually means that the x value on the edge
of the estimated y range will be assigned.

• extrapolate=FALSE (default) translates to rule=1, which means an NA will be returned for
any target y value lying outside the estimated y range.

Note also that the function is set up to work with a vector of targets.

If the data were obtained from an adaptive dose-finding design and you seek to estimate a dose other
than the experiment’s target, note that away from the target the estimates are likely biased (Flournoy
and Oron, 2019). Use adaptiveShrink=TRUE to mitigate the bias. In addition, either provide the
true target as starget, or a vector of values to target, with the first value being the true target.

Tie-breaking - the tiemeth argument passed on as the ties argument for approx() - provides yet
another complication: as of 2.5.0, the default is "decide", which means that the function chooses
the most interior x value if target falls on the boundary of y estimates. Inside the boundaries the
argument becomes mean, but with CIR this is generally ignored because there are no interior ties.
Otherwise, if traditional isotonic regression (oldPAVA) is used, then the "decide" algorithm will
pass ties = "ordered" on to approx(), respecting IR’s flat stretches. A user-chosen value for
tiemeth will override all of that; see ?approx for options.

Value

under default, returns point estimate(s) of the dose (x) for the provided target rate(s). With full=TRUE,
returns a list with

• targest: The said point estimate of x

• input: a doseResponse object summarizing the input data

• output: a doseResponse object with the forward estimate at design points

• shrinkage: a doseResponse object which is the alg output of the forward-estimation func-
tion

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

References

Flournoy N and Oron AP, 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

See Also

oldPAVA,cirPAVA. If you’d like point and interval estimates together, use quickInverse.

DRshrink 11

DRshrink Shrinkage fix to mitigate bias in observed rates, under adaptive dose-
finding designs

Description

Adaptive dose-finding designs induce a bias on observed rates away from the target dose. This is
well-known in other adaptive-design fields, but has been overlooked by the dose-finding research
community. Flournoy and Oron (2020) examine the bias in the dose-finding context, and suggest a
simple shrinkage fix that reduces both bias and variance. The fix is analogous to the empirical-logit
fix for zero counts in binary data, but instead of adding 0.5 to each cell, target is added to the 1’s
at each dose, and 1-target to the 0’s. The shrinkage is applied to the raw observation, so CIR or
IR are carried out on the shrunk data.

Usage

DRshrink(y, x = NULL, wt0 = NULL, target, swt = 1, nmin = 2, ...)

Arguments

y can be either of the following: y values (response rates), a 2-column matrix with
positive/negative response counts by dose, a DRtrace object or a doseResponse
object.

x dose levels (if not included in y).

wt0 weights (if not included in y).

target the balance point (between 0 and 1) around which the design concentrates allo-
cations.

swt the weight of the shrinkage. Default 1 (a single observation)

nmin the minimum n at each dose, for the shrinkage to be applied. Default 2.

... parameters passed on to doseResponse()

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

References

Flournoy N and Oron AP, 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

12 is.DRtrace

Examples

Summary of raw data from the notorious Neuenschwander et al. (Stat. Med., 2008) trial
Note the use of the 'cohort' argument to specify the cohort order
neundatDose = doseResponse(x=c(1,2.5,5,10,20,25), y = c(rep(0,4),2/9,1), wt = c(3,4,5,4,9,2))

neundatDose

Compare to this:
DRshrink(neundatDose, target = 0.3)

is.DRtrace Constructor functions and class-checking functions for DRtrace and
doseResponse classes

Description

Functions to create and sanity-check objects of the DRtrace (dose-response experiment trace/trajectory)
and doseResponse (dose-specific response-rate summary) classes. Note that the latter inherits from
the former, purely for programming-convenience reasons.

Usage

is.DRtrace(dr)

is.doseResponse(dr)

DRtrace(y, x = NULL, cohort = NULL, noyes = FALSE, ...)

doseResponse(y, x = NULL, wt = rep(1, length(y)), noyes = FALSE, ...)

Arguments

dr the object being checked

y, x see Details.

cohort (DRtrace only) specify each observation’s cohorts, if there were cohorts. If all
cohorts were the same size, then you can specify the size as a single number. If
there were no cohorts, code will default this variable to 1:n

noyes logical, in case of a 2-column input is the 1st column ’no’? Default FALSE,
meaning the 1st column is ’yes’.

... parameters passed on to DRtrace(), or ignored.

wt (doseResponse only) the weights associated with each x value; usually the sam-
ple size or similar.

is.DRtrace 13

Details

The input argument y can include the entire information, or as little as the y vector of responses (for
a DRtrace object) or response rates (doseResponse). When including the entire information, it has
to be a data frame with at least y (both y and x for DRtrace), or a two-column matrix with ’yes’
and ’no’ responses (assumed in this order, but can be the reverse with noyes=TRUE). In this case the
doses x can be provided as a separate vector, or as the matrix row names. doseResponse will return
an error if there are any duplicates in x.

Even though both DRtrace and doseResponse accept two-column yes/no matrix input, the inter-
pretation is different. For the former, this form of input is intended mostly to enable shorthand input
when the experiment was run in cohorts. Each row represents a cohort’s results, and rows must
be in the order the experiment was run. For the latter, the yes-no table is a summary tabulation of
responses and is treated accordingly, including rearrangement of rows to increasing x.

Value

For constructor functions, the relevant object. For checking functions, a logical value indicating
whether the object meets class definition.

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

See Also

cirPAVA, plot.doseResponse,plot.DRtrace

Examples

Summary of raw data from the notorious Neuenschwander et al. (Stat. Med., 2008) trial
Note the use of the 'cohort' argument to specify the cohort order
neundatTrace = DRtrace(x = c(rep(1:4, c(3,4,5,4)), 7, 7, rep(6,9)),

y = c(rep(0,16), 1,1, rep(c(0,0,1),2), 0,0,0),
cohort = rep(1:8, c(3,4,5,4, 2, 3,3,3)))

par(mar=c(3,3,3,1), mgp=c(2,.5,0), tcl=-0.25)
layout(t(1:2))
plot(neundatTrace ,main="N. et al. (2008) Trajectory", xlab = 'Cohort',

ylab="Ordinal Dose Level" ,cex.main=1.5)

Same data, in 'doseResponse' format with actual doses rather than dose levels
neundatDose = doseResponse(x=c(1,2.5,5,10,20,25), y = c(rep(0,4),2/9,1), wt = c(3,4,5,4,9,2))
plot(neundatDose ,main="N. et al. (2008) Final Dose-Toxicity", ylim=c(0,1),
xlab="Dose (mg/sq.m./wk)", ylab="Toxicity Response Curve (F)", cex.main=1.5)
We can also convert the DRtrace object to doseResponse...
neundatLevel = doseResponse(neundatTrace)

Now plotting the former, vs. IR/CIR estimates
neunCIR0 = cirPAVA(neundatDose,full=TRUE, adaptiveShrink = TRUE, target = 0.3)
lines(neunCIR0$shrinkage$x, neunCIR0$shrinkage$y)
legend(1,1, pch=c(4,NA), lty = 0:1, legend=c('Observations', 'CIR w/bias corr.'), bty='n')

14 isotInterval

isotInterval Backend utility to calculate analytical CIR/IR interval estimates, given
the point estimates

Description

For confidence intervals at design points (x values with obesrvations), this function calls intfun
to do the work. In addition, CIs for any x value are calculated using linear interpolation between
design points (note that for CIR, this differs from the interpolation of point estimates which is
carried out between shrinkage points, as explained in quickIsotone). The interval estimation
method is presented and discussed by Oron and Flournoy (2017).

Usage

isotInterval(
isotPoint,
outx = isotPoint$output$x,
conf = 0.9,
intfun = morrisCI,
...

)

Arguments

isotPoint The output of an estimation function such as cirPAVA with the option full=TRUE.
Should be a list of 3 doseResponse objects named input, output, shrinkage.

outx vector of x values for which estimates will be made. If NULL (default), this will
be set to the set of unique values in isotPoint$x argument (or equivalently in
y$x).

conf numeric, the interval’s confidence level as a fraction in (0,1). Default 0.9.

intfun the function to be used for interval estimation. Default morrisCI (see help on
that function for additional options).

... additional arguments passed on to intfun

Value

a data frame with two variables ciLow, ciHigh containing the estimated lower and upper confi-
dence bounds, respectively.

Note

All provided algorithms and formulae are for binary/Binomial data only. For other data, write your
own intfun, returning a two-column matrix.

Interval coverage for extreme percentiles with adaptive designs may be lacking: use adaptiveCurve=TRUE
whenever the target is outside (0.4, 0.6). This should work as far as the 10th or 90th percentile,
but not for more extreme targets.

isotInterval 15

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

References

Oron, A.P. and Flournoy, N., 2017. Centered Isotonic Regression: Point and Interval Estimation for
Dose-Response Studies. Statistics in Biopharmaceutical Research 3, 258-267.

See Also

quickIsotone,quickInverse,morrisCI,

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
The experiment's goal is to find the 30th percentile
slow1=cirPAVA(dat,full=TRUE)
Default interval (Morris+Wilson); same as you get by directly calling 'quickIsotone'
int1=isotInterval(slow1)
Morris without Wilson; the 'narrower=FALSE' argument is passed on to 'morrisCI'
int1_0=isotInterval(slow1,narrower=FALSE)
Wilson without Morris
int2=isotInterval(slow1,intfun=wilsonCI)
Agresti=Coull (the often-used "plus 2")
int3=isotInterval(slow1,intfun=agcouCI)
Jeffrys (Bayesian-inspired) is also available
int4=isotInterval(slow1,intfun=jeffCI)

Showing the data and the intervals
par(mar=c(3,3,4,1),mgp=c(2,.5,0),tcl=-0.25)
plot(dat,ylim=c(0,0.65),refsize=4,las=1,main="Forward-Estimation CIs") # uses plot.doseResponse()

The true response function; true target is where it crosses the y=0.3 line
lines(seq(0,7,0.1),pweibull(seq(0,7,0.1),shape=1.1615,scale=8.4839),col=4)

lines(int1$ciLow,lty=2,col=2,lwd=2)
lines(int1$ciHigh,lty=2,col=2,lwd=2)

lines(int1_0$ciLow,lty=2)
lines(int1_0$ciHigh,lty=2)

lines(int2$ciLow,lty=2,col=3)
lines(int2$ciHigh,lty=2,col=3)
Plotting the remaining 2 is skipped, as they are very similar to Wilson.

Note how the default (red) boundaries take the tighter of the two options everywhere,
except for one place (dose 1 upper bound) where they go even tighter thanks to monotonicity
enforcement. This can often happen when sample size is uneven; since bounds tend to be
conservative it is rather safe to do.

16 morrisCI

legend('topleft',pch=c(NA,'X',NA,NA,NA),lty=c(1,NA,2,2,2),col=c(4,1,2,1,3),lwd=c(1,1,2,1,1),legend
=c('True Curve','Observations','Morris+Wilson (default)','Morris only','Wilson only'),bty='n')

morrisCI Analytical ordered-binary-Y confidence intervals, using the Morris
(1988) algorithm

Description

Analytical confidence intervals for CIR and IR, using the recursive algorithm by Morris (1988),
equation (4.3), for ordered-binary-Y point estimates. Optionally, the intervals are narrowed further
using a backup (unordered) interval estimate at each individual x value.

Usage

morrisCI(
y,
n,
phat = y/n,
conf = 0.9,
narrower = TRUE,
alternate = wilsonCI,
...

)

Arguments

y integer or numeric vector, the pointwise Binomial counts

n integer or numeric vector, the pointwise sample sizes

phat numeric vector, the point estimates. Defaults to y/n, but when called by isotInterval
is overridden by the actual CIR/IR point estimate.

conf numeric, the interval’s confidence level as a fraction in (0,1). Default 0.9.

narrower logical, if the alternate-produced interval is narrower at any point, should it
replace the Morris result? Also, can we enforce straightforward monotonocity
to narrow the bounds? Default TRUE.

alternate function to use for alternate pointwise interval. Default wilconCI.

... parameters passed on to alternate.

Details

The default for backup is Wilson’s (wilconCI). Also available are Jeffrys’ (jeffCI) and Agresti-
Coull (agcouCI).

morrisCI 17

Value

A two-column matrix with the same number of rows as length(phat), containing the calculated
lower and upper bounds, respectively.

Note

This function found and corrected a typo in equation (4.3), namely the use of G_(j+1) in the re-
cursion. The recursion cannot start in this way. Rather, it is the use of theta_(j+1) that delivers
information from adjacent doses. Or perhaps in other words, there is only one G function rather
than a different one for each dose. The correction has been verified by reproducing the numbers in
the Morris (1988) example (Table 1), and also approved by the original author.

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

References

Morris, M., 1988. Small-sample confidence limits for parameters under inequality constraints with
application to quantal bioassay. Biometrics 44, 1083-1092.

See Also

isotInterval

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
The experiment's goal is to find the 30th percentile
slow1=cirPAVA(dat,full=TRUE)
Default interval (Morris+Wilson); same as you get by directly calling 'quickIsotone'
int1=isotInterval(slow1)
Morris without Wilson; the 'narrower=FALSE' argument is passed on to 'morrisCI'
int1_0=isotInterval(slow1,narrower=FALSE)
Wilson without Morris
int2=isotInterval(slow1,intfun=wilsonCI)
Agresti=Coull (the often-used "plus 2")
int3=isotInterval(slow1,intfun=agcouCI)
Jeffrys (Bayesian-inspired) is also available
int4=isotInterval(slow1,intfun=jeffCI)

Showing the data and the intervals
par(mar=c(3,3,4,1),mgp=c(2,.5,0),tcl=-0.25)
plot(dat,ylim=c(0,0.65),refsize=4,las=1,main="Forward-Estimation CIs") # uses plot.doseResponse()

The true response function; true target is where it crosses the y=0.3 line
lines(seq(0,7,0.1),pweibull(seq(0,7,0.1),shape=1.1615,scale=8.4839),col=4)

lines(int1$ciLow,lty=2,col=2,lwd=2)

18 oldPAVA

lines(int1$ciHigh,lty=2,col=2,lwd=2)

lines(int1_0$ciLow,lty=2)
lines(int1_0$ciHigh,lty=2)

lines(int2$ciLow,lty=2,col=3)
lines(int2$ciHigh,lty=2,col=3)
Plotting the remaining 2 is skipped, as they are very similar to Wilson.

Note how the default (red) boundaries take the tighter of the two options everywhere,
except for one place (dose 1 upper bound) where they go even tighter thanks to monotonicity
enforcement. This can often happen when sample size is uneven; since bounds tend to be
conservative it is rather safe to do.

legend('topleft',pch=c(NA,'X',NA,NA,NA),lty=c(1,NA,2,2,2),col=c(4,1,2,1,3),lwd=c(1,1,2,1,1),legend
=c('True Curve','Observations','Morris+Wilson (default)','Morris only','Wilson only'),bty='n')

oldPAVA "Old School" isotonic-regression point estimates, with flexible dose-
response input

Description

Nonparametric forward point estimation of a monotone response (y), using the standard isotonic-
regression pool-adjacent-violators algorithm (PAVA). Core code from Raubertas (1994) with many
modifications.

Usage

oldPAVA(
y,
x = NULL,
wt = rep(1, length(x)),
outx = NULL,
full = FALSE,
dec = FALSE,
adaptiveShrink = FALSE,
...

)

Arguments

y can be either of the following: y values (response rates), a 2-column matrix with
positive/negative response counts by dose, a DRtrace object or a doseResponse
object.

x dose levels (if not included in y). Note that the PAV algorithm doesn’t really use
them.

oldPAVA 19

wt weights (if not included in y).

outx vector of x values for which predictions will be made. If NULL (default), this
will be set to the set of unique values in the x argument (or equivalently in y$x).
Non-NULL inputs are relevant only if full=TRUE.

full logical, is a more complete output desired? if FALSE (default), only a vector of
point estimates for y at the provided dose levels is returned

dec logical, is the true function is assumed to be monotone decreasing? Default
FALSE.

adaptiveShrink logical, should the y-values be pre-shrunk towards an experimental target? May
be relevant if data were obtain via an adaptive dose-finding design. See DRshrink.

... Other arguments passed on to the constructor functions that pre-process the in-
put.

Details

Compute the isotonic regression (IR) point estimate of a numeric input vector y, with weights
wt, with respect to simple order. The core algorithm is still the one coded by R.F. Raubertas,
dated 02 Sep 1994. However, the input and output modules have been modified to allow more
flexible formats in either direction. The output is also compatible with the convenience wrapper
quickIsotone; however you will have to set estfun = oldPAVA to get it to run IR rather than
centered isotonic regression (CIR) which is the default for all wrapper functions in this package.

Note that unlike CIR (see cirPAVA), this algorithm does not use the dose (x) values at all. For
a discussion why CIR is preferred over the "plain-vanilla" PAVA of this function, see Oron and
Flournoy (2017).

Value

under default, returns a vector of y estimates at unique x values. With full=TRUE, returns a list of
3 doseResponse objects named output,input,shrinkage for the output data at dose levels, the
input data, and the function as fit at algorithm-generated points, respectively. For this function, the
first and third objects are identical.

Author(s)

C.R. Raubertas, Assaf P. Oron <assaf.oron.at.gmail.com>

References

Oron, A.P. and Flournoy, N., 2017. Centered Isotonic Regression: Point and Interval Estimation for
Dose-Response Studies. Statistics in Biopharmaceutical Research, In Press (author’s public version
available on arxiv.org).

See Also

cirPAVA

20 plot.DRtrace

plot.DRtrace Plotting Methods for DRtrace, doseResponse Objects

Description

Plotting methods for doseResponse and DRtrace classes.

Usage

S3 method for class 'DRtrace'
plot(
x,
xlab = "Patient Order",
ylab = "Dose",
shape = "circle",
connect = TRUE,
mcol = 1,
dosevals = NULL,
offset = 0.2,
...

)

S3 method for class 'doseResponse'
plot(
x,
xlab = "Dose",
ylab = "Response",
pch = "X",
varsize = TRUE,
refsize = sqrt(1/mean(x$weight)),
connect = FALSE,
mcol = 1,
dosevals = NULL,
...

)

Arguments

x the object, whether DRtrace or doseResponse

xlab, ylab x-axis and y-axis labels passed on to plot

shape the plotting shape (DRtrace only): ’circle’ (default), ’square’, or ’triangle’

connect logical: whether to connect the symbols (generic plotting type ’b’). Default
TRUE for DRtrace and FALSE for doseResponse

mcol The color of the main plotting symbols and connecting lines. Default 1 (the
current palette’s first color). Note: if you change the color and inadvertently use
col instead, there will be an error message.

plot.DRtrace 21

dosevals Dose values to be plotted along the x-axis (plot.doseResponse) or y-axis
(plot.DRtrace) . If NULL (default), those will be the doses in the dataset
(i.e.,sort(unique(x$x))).

offset (DRtrace only) In case of a cohort-based experiment, the relative vertical off-
set between symbols for outcomes within the same cohort (as fraction of dose
spacing). Default 0.2.

... Other arguments passed on to plot.
Conversely, putting values on a different scale into dosevals, or even text labels
instead of numbers, won’t work. For the former, change the scale at the source
data (i.e., in the plotted object). For the latter, sorry but no solution at present.

pch the plotting character (doseResponse only), the default being ’X’ marks

varsize (doseResponse only) logical, should symbol size vary by sample size? Default
TRUE

refsize (doseResponse only) a reference size by which the plotting sizes will be multi-
plied. Default is 1/sqrt(mean(dr$weight)), scaled so that if varsize = TRUE
the weighted-average symbol size is 1. If varsize = FALSE, this argument is
equivalent to cex in an ordinary x-y plot() call.

Details

Generic methods for dose-response trajectory/trace (DRtrace), and dose-response summary (doseResponse)
class objects. The DRtrace plotting uses the typical convention of plotting dose-finding experimen-
tal trace, with dose levels (x) in the vertical axis and 1/0 responses (y) denoted via filled/empty
circles, respectively. In other words, this generic plotting method is only relevant for binary 0/1
outcomes. If cohort information is provided via x$cohort (i.e., multiple observations considered
as collected together rather than each data point sequentially), then the plotting will respect cohort
structure. The doseResponse plotting has response rate on the y-axis and dose on the x-axis, and
plots symbols whose area is proportional to the weights.

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

See Also

doseResponse, DRtrace

Examples

Summary of raw data from the notorious Neuenschwander et al. (Stat. Med., 2008) trial
Note the use of the 'cohort' argument to specify the cohort order
neundatTrace = DRtrace(x = c(rep(1:4, c(3,4,5,4)), 7, 7, rep(6,9)),

y = c(rep(0,16), 1,1, rep(c(0,0,1),2), 0,0,0),
cohort = rep(1:8, c(3,4,5,4, 2, 3,3,3)))

par(mar=c(3,3,3,1), mgp=c(2,.5,0), tcl=-0.25)
layout(t(1:2))
plot(neundatTrace ,main="N. et al. (2008) Trajectory", xlab = 'Cohort',

ylab="Ordinal Dose Level" ,cex.main=1.5)

22 quickInverse

Same data, in 'doseResponse' format with actual doses rather than dose levels
neundatDose = doseResponse(x=c(1,2.5,5,10,20,25), y = c(rep(0,4),2/9,1), wt = c(3,4,5,4,9,2))
plot(neundatDose ,main="N. et al. (2008) Final Dose-Toxicity", ylim=c(0,1),
xlab="Dose (mg/sq.m./wk)", ylab="Toxicity Response Curve (F)", cex.main=1.5)
We can also convert the DRtrace object to doseResponse...
neundatLevel = doseResponse(neundatTrace)

Now plotting the former, vs. IR/CIR estimates
neunCIR0 = cirPAVA(neundatDose,full=TRUE, adaptiveShrink = TRUE, target = 0.3)
lines(neunCIR0$shrinkage$x, neunCIR0$shrinkage$y)
legend(1,1, pch=c(4,NA), lty = 0:1, legend=c('Observations', 'CIR w/bias corr.'), bty='n')

quickInverse Convenient point and Interval Inverse Estimation ("Dose-Finding"),
using CIR or IR

Description

Convenience wrapper for point and interval estimation of the "dose" that would generate a target
"response" value, using CIR and IR.

Usage

quickInverse(
y,
x = NULL,
wt = NULL,
target,
estfun = cirPAVA,
intfun = morrisCI,
delta = TRUE,
conf = 0.9,
resolution = 100,
extrapolate = FALSE,
adaptiveShrink = FALSE,
starget = target[1],
adaptiveCurve = FALSE,
...

)

Arguments

y can be either of the following: y values (response rates), a 2-column matrix with
positive/negative response counts by dose, a DRtrace object or a doseResponse
object.

x dose levels (if not included in y).

wt weights (if not included in y).

quickInverse 23

target A vector of target response rate(s), for which the percentile dose estimate is
needed. See Note.

estfun the function to be used for point estimation. Default cirPAVA.

intfun the function to be used for interval estimation. Default morrisCI (see help on
that function for additional options).

delta logical: should intervals be calculated using the delta ("local") method (default,
TRUE) or back-drawn directly from the forward bounds? See Details.

conf numeric, the interval’s confidence level as a fraction in (0,1). Default 0.9.

resolution numeric: how fine should the grid for the inverse-interval approximation be?
Default 100, which seems to be quite enough. See ’Details’.

extrapolate logical: should extrapolation beyond the range of estimated y values be allowed?
Default FALSE. Note this affects only the point estimate; interval boundaries are
not extrapolated.

adaptiveShrink logical, should the y-values be pre-shrunk towards an experiment’s target? Rec-
ommended when the data were obtained via an adaptive dose-finding design.
See DRshrink and the Note below.

starget The shrinkage target. Defaults to target[1].

adaptiveCurve logical, should the CIs be expanded by using a parabolic curve between esti-
mation points rather than straight interpolation (default FALSE)? Recommended
when adaptive design was used and target is not 0.5.

... Other arguments passed on to doseFind and quickIsotone, and onwards from
there.

Details

The inverse point estimate is calculated in a straightforward manner from a forward estimate, us-
ing doseFind. For the inverse interval, the default option (delta=TRUE) calls deltaInverse for a
"local" (Delta) inversion of the forward intervals. If delta=FALSE, a second call to quickIsotone
generates a high-resolution grid outlining the forward intervals. Then the algorithm "draws a hor-
izontal line" at y=target to find the right and left bounds on this grid. Note that the right (upper)
dose-finding confidence bound is found on the lower forward confidence bound, and vice versa.
This approach is not recommended, tending to produce CIs that are too wide.

If the data were obtained from an adaptive dose-finding design and you seek to estimate a dose other
than the experiment’s target, note that away from the target the estimates are likely biased (Flournoy
and Oron, 2019). Use adaptiveShrink=TRUE to mitigate the bias. In addition, either provide the
true target as starget, or a vector of values to target, with the first value being the true target.

Value

A data frame with 4 elements:

• target: The user-provided target values of y, at which x is estimated

• point: The point estimates of x
• lowerPPconf,upperPPconf: the interval-boundary estimates for a ’PP’=100*conf confi-

dence interval

24 quickIsotone

References

Flournoy N and Oron AP, 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

See Also

quickIsotone,doseFind,deltaInverse

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
The experiment's goal is to find the 30th percentile
inv1=quickInverse(dat, target=0.3, adaptiveShrink = TRUE, adaptiveCurve = TRUE)
With old PAVA as the forward estimator, and without the adaptive-design corrections:
inv0=quickInverse(dat, target=0.3, estfun=oldPAVA)

Showing the data and the estimates
par(mar=c(3,3,1,1), mgp=c(2,.5,0), tcl=-0.25)
plot(dat, ylim=c(0.05,0.55), las=1) # uses plot.doseResponse()

The true response function; true target is where it crosses the y=0.3 line
lines(seq(1,5,0.1),pweibull(seq(1,5,0.1),shape=1.1615,scale=8.4839),col=4)
abline(h=0.3,col=2,lty=3)
Plotting the point estimates, as "tick" marks on the y=0.3 line
lines(rep(inv1$point,2),c(0.25,0.35), lwd=1.5) # CIR
lines(rep(inv0$point,2),c(0.25,0.35),lty=2, lwd=1.5) # IR
You could plot the CIs too,
Here's code to plot the CIR 90% CI as a light-green rectangle:
rect(inv1$lower90conf,0.25,inv1$upper90conf,0.35,col=rgb(0,1,0,alpha=0.3),border=NA)
Intervals are plotted and interval options are explored more extensively
in the 'deltaInverse' help page.

legend('topleft',pch=c(NA,'X',NA,NA),lty=c(1,NA,2,1),col=c(4,1,1,1),
legend=c('True Curve','Observations','IR Estimate','CIR Estimate'),bty='n')

quickIsotone Convenient Forward point and interval estimation via CIR or IR

Description

One-Stop-shop Forward point and confidence-interval estimation of a monotone response (y) as a
function of dose (x), using centered-isotonic-regression (CIR, default) or isotonic regression. Input
format is rather flexible. This function calls cirPAVA, oldPAVA, or a user-written function, for the
point estimate, then isotInterval for the confidence interval. Vector input is allowed, but the
preferred input format is a doseResponse object. An analogous function for dose-finding (inverse
estimation) is quickInverse.

quickIsotone 25

Usage

quickIsotone(
y,
x = NULL,
wt = NULL,
outx = NULL,
dec = FALSE,
estfun = cirPAVA,
intfun = morrisCI,
conf = 0.9,
adaptiveShrink = FALSE,
...

)

Arguments

y can be either of the following: y values (response rates), a 2-column matrix with
positive/negative response counts by dose, a DRtrace object or a doseResponse
object.

x dose levels (if not included in y). Note that the PAV algorithm doesn’t really use
them.

wt weights (if not included in y).

outx vector of x values for which predictions will be made. If NULL (default), this will
be set to the set of unique values in the x argument (or equivalently in y$x).

dec logical, is the true function assumed to be monotone decreasing rather than in-
creasing? Default FALSE.

estfun the function to be used for point estimation. Default cirPAVA.

intfun the function to be used for interval estimation. Default wilsonCI (see help on
that function for additional options).

conf numeric, the interval’s confidence level as a fraction in (0,1). Default 0.9.

adaptiveShrink logical, should the y-values be pre-shrunk towards an experiment’s target? Rec-
ommended if data were obtained via an adaptive dose-finding design. If TRUE,
then must also provide a target argument that will be passed via

... arguments passed on to other functions (constructor, point estimate and interval
estimate).

Value

A data frame with 4 variables:

• x either the input x values, or outx if specified;

• y he point estimates of x;
• lowerPPconf,upperPPconf the interval-boundary estimates for a PP=100*conf confidence

interval.

26 quickIsotone

Note

You can obtain interpolated point estimates for x values between the observed data by specifying
them via outx. However, for CIR, do NOT commit the error of generating estimates at observations,
then interpolating using approx. If you need to retain a set of estimates for plotting the entire fitted
curve, or for future interpolation at unknown points, call cirPAVA directly with full=TRUE, then
use the returned shrinkage data frame for plotting and interpolation. See example code below.

If the data were obtained from an adaptive dose-finding design then away from the design’s target
the estimates are likely biased (Flournoy and Oron, 2020). Use adaptiveShrink=TRUE to mitigate
the bias.

Author(s)

Assaf P. Oron <assaf.oron.at.gmail.com>

References

Oron, A.P. and Flournoy, N., 2017. Centered Isotonic Regression: Point and Interval Estimation
for Dose-Response Studies. Statistics in Biopharmaceutical Research 9, 258-267. (author’s public
version available on arxiv.org).

Flournoy, N. and Oron, A.P., 2020. Bias Induced by Adaptive Dose-Finding Designs. Journal of
Applied Statistics 47, 2431-2442.

See Also

cirPAVA,oldPAVA,isotInterval,quickInverse,doseResponse

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
CIR, using the default 'quick' function that also provides CIs (default 90%).
The experiment's goal is to find the 30th percentile. We deploy the empirical bias correction.
quick1=quickIsotone(dat, adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
quick1
Use 'estfun' argument to operate the same function with old PAVA as the estimator
Here we neglect the bias correction to sharpen the old:new contrast
quick0=quickIsotone(dat,estfun=oldPAVA)
quick0

Showing the data and the fits
par(mar=c(3,3,1,1),mgp=c(2,.5,0),tcl=-0.25)
plot(dat, ylim=c(0.05,0.55), las=1) # uses plot.doseResponse()
The IR fit: a straightforward interpolation
lines(quick0$y,lty=2)

With CIR, 'quickIsotone' cannot show us the true underlying interpolation;
it only provides the estimates at requested points. Interpolation should be done between
shrinkage points, not the original design points. So we must call the full 'cirPAVA' function:

slope 27

slow1 = cirPAVA(dat, full=TRUE, adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
Now, compare these 3 (the first one is wrong, b/c it interpolates from design points):
midpts = 1:4 + 0.5
approx(1:5,quick1$y, xout=midpts)$y
instead, you can just call 'quickIsotone' and specify 'outx'
quickIsotone(dat,outx=midpts , adaptiveShrink = TRUE, adaptiveCurve = TRUE, target = 0.3)
approx(slow1$shrinkage$x,slow1$shrinkage$y,xout=midpts)$y # Or use 'cirPAVA'

Ok... finally plotting the CIR curve
Both flat intervals are shrunk, because neither are at y=0 or y=1
lines(slow1$shrinkage$x,slow1$shrinkage$y, lwd = 2)

Last but not least, here's the true response function
lines(seq(1,5,0.1),pweibull(seq(1,5,0.1),shape=1.1615,scale=8.4839),col=2)
legend('topleft',pch=c(NA,'X',NA,NA),lty=c(1,NA,2,1),col=c(2,1,1,1),
legend=c('True Curve','Observations','IR','CIR'), bty='n')

slope Piecewise-linear local slopes given a (non-strictly) monotone x-y se-
quence

Description

Estimate monotone piecewise-linear slopes, with the default behavior forbidding zero slope. This
behavior is due to the fact that the function is used to invert confidence intervals using the Delta
method. The input interval has to be strictly increasing in x, and (non-strictly) monotone in y
(increasing or decreasing).

Usage

slope(
x,
y,
outx = x,
allowZero = FALSE,
tol = 0.01,
full = FALSE,
decreasing = FALSE

)

Arguments

x numeric or integer: input x values, must be strictly increasing

y numeric: input y values, must be monotone (can be non-strict) and in line with
the direction specified by decreasing

outx numeric or integer: x values at which slopes are desired (default: same as input
values)

allowZero logical: should zero be allowed in the output? Default FALSE

28 wilsonCI

tol tolerance level: when allowZero=FALSE, slope below that value is considered
zero. Default 1e-2. Might need to change if you use unusual units for x or y.

full logical: should a more detailed output be provided? Default FALSE (see details
under ’Value’).

decreasing logical: is input supposed to be monotone decreasing rather than increasing?
Default FALSE

Details

At design points (i.e., the input x values), the function takes the average between the left and right
slopes (on the edges the inside slope is technically replicated to the outside). If allowZero=FALSE
(default), the algorithm gradually expands the x range over which slope is observed (by increments
of one average x spacing), until a positive slope results. If the input is completely flat in y and
allowZero=FALSE, the function returns NAs.

Value

If full=FALSE, returns a vector of slopes at the points specified by outx.

If full=TRUE, returns a list with slopes at the design point (rawslopes), the initial guess at output
slopes (initial), and the official final ones (final).

See Also

deltaInverse, which uses this function.

wilsonCI Standard unordered-Binomial confidence interval utilities.

Description

Standard small-sample Binomial confidence interval utilities, using the methods of Wilson, Agresti-
Coull and Jeffrys.

Usage

wilsonCI(phat, n, conf = 0.9, ...)

agcouCI(phat, n, conf = 0.9, ...)

jeffCI(phat, n, conf = 0.9, w1 = 0.5, w2 = w1, ...)

Arguments

phat numeric vector, point estimates for which an interval is sought
n integer vector of same length, of pointwise sample sizes
conf numeric in (0,1), the confidence level
... pass-through for compatibility with a variety of calling functions
w1, w2 numeric, weights used in jeffCI only

wilsonCI 29

Details

These functions implement the basic (uncorrected) three intervals which are seen by the consensus
of literature as the "safest" off-the-shelf formulae. None of them account for ordering or mono-
tonicity; therefore the cir package default is morrisCI which does account for that, with the 3
unordered formulae used for optional narrowing of the interval at individual points.

Value

A two-column matrix with the same number of rows as length(phat), containing the calculated
lower and upper bounds, respectively.

See Also

isotInterval for more details about how forward CIs are calculated, quickInverse for inverse
(dose-finding) intervals.

Examples

Interesting run (#664) from a simulated up-and-down ensemble:
(x will be auto-generated as dose levels 1:5)
dat=doseResponse(y=c(1/7,1/8,1/2,1/4,4/17),wt=c(7,24,20,12,17))
The experiment's goal is to find the 30th percentile
slow1=cirPAVA(dat,full=TRUE)
Default interval (Morris+Wilson); same as you get by directly calling 'quickIsotone'
int1=isotInterval(slow1)
Morris without Wilson; the 'narrower=FALSE' argument is passed on to 'morrisCI'
int1_0=isotInterval(slow1,narrower=FALSE)
Wilson without Morris
int2=isotInterval(slow1,intfun=wilsonCI)
Agresti=Coull (the often-used "plus 2")
int3=isotInterval(slow1,intfun=agcouCI)
Jeffrys (Bayesian-inspired) is also available
int4=isotInterval(slow1,intfun=jeffCI)

Showing the data and the intervals
par(mar=c(3,3,4,1),mgp=c(2,.5,0),tcl=-0.25)
plot(dat,ylim=c(0,0.65),refsize=4,las=1,main="Forward-Estimation CIs") # uses plot.doseResponse()

The true response function; true target is where it crosses the y=0.3 line
lines(seq(0,7,0.1),pweibull(seq(0,7,0.1),shape=1.1615,scale=8.4839),col=4)

lines(int1$ciLow,lty=2,col=2,lwd=2)
lines(int1$ciHigh,lty=2,col=2,lwd=2)

lines(int1_0$ciLow,lty=2)
lines(int1_0$ciHigh,lty=2)

lines(int2$ciLow,lty=2,col=3)
lines(int2$ciHigh,lty=2,col=3)
Plotting the remaining 2 is skipped, as they are very similar to Wilson.

30 wilsonCI

Note how the default (red) boundaries take the tighter of the two options everywhere,
except for one place (dose 1 upper bound) where they go even tighter thanks to monotonicity
enforcement. This can often happen when sample size is uneven; since bounds tend to be
conservative it is rather safe to do.

legend('topleft',pch=c(NA,'X',NA,NA,NA),lty=c(1,NA,2,2,2),col=c(4,1,2,1,3),lwd=c(1,1,2,1,1),legend
=c('True Curve','Observations','Morris+Wilson (default)','Morris only','Wilson only'),bty='n')

Index

agcouCI (wilsonCI), 28
approx, 10, 26

cir (cir-package), 2
cir-package, 2
cirPAVA, 3, 6, 9, 10, 13, 14, 19, 23–26

deltaInverse, 6, 23, 24, 28
doseFind, 6, 8, 23, 24
doseResponse, 2–4, 6, 9, 11, 14, 18–22, 24–26
doseResponse (is.DRtrace), 12
DRshrink, 5, 7, 9, 11, 19, 23
DRtrace, 2, 3, 9, 11, 18, 20–22, 25
DRtrace (is.DRtrace), 12

is.doseResponse (is.DRtrace), 12
is.DRtrace, 12
isotInterval, 7, 14, 16, 17, 24, 26, 29

jeffCI (wilsonCI), 28

morrisCI, 6, 14, 15, 16, 23, 29

oldPAVA, 5, 10, 18, 24, 26

plot, 20, 21
plot.doseResponse, 13
plot.doseResponse (plot.DRtrace), 20
plot.DRtrace, 13, 20

quickInverse, 2, 7, 10, 15, 22, 24, 26, 29
quickIsotone, 2, 4, 5, 7, 14, 15, 19, 23, 24, 24

slope, 6, 7, 27

wilsonCI, 25, 28

31

	cir-package
	cirPAVA
	deltaInverse
	doseFind
	DRshrink
	is.DRtrace
	isotInterval
	morrisCI
	oldPAVA
	plot.DRtrace
	quickInverse
	quickIsotone
	slope
	wilsonCI
	Index

