
Package ‘effectplots’
December 11, 2024

Title Effect Plots

Version 0.2.0

Description High-performance implementation of various effect plots
useful for regression and probabilistic classification tasks. The
package includes partial dependence plots (Friedman, 2021,
<doi:10.1214/aos/1013203451>), accumulated local effect plots and
M-plots (both from Apley and Zhu, 2016, <doi:10.1111/rssb.12377>), as
well as plots that describe the statistical associations between model
response and features. It supports visualizations with either
'ggplot2' or 'plotly', and is compatible with most models, including
'Tidymodels', models wrapped in 'DALEX' explainers, or models with
case weights.

License GPL (>= 3)

Depends R (>= 4.1.0)

Encoding UTF-8

RoxygenNote 7.3.2

Imports collapse, ggplot2, grDevices, patchwork, plotly, Rcpp, stats

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

URL https://github.com/mayer79/effectplots

BugReports https://github.com/mayer79/effectplots/issues

LinkingTo Rcpp

Enhances h2o

NeedsCompilation yes

Author Michael Mayer [aut, cre]

Maintainer Michael Mayer <mayermichael79@gmail.com>

Repository CRAN

Date/Publication 2024-12-11 18:50:01 UTC

1

https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1111/rssb.12377
https://github.com/mayer79/effectplots
https://github.com/mayer79/effectplots/issues

2 .ale

Contents

.ale . 2

.pd . 4
ale . 5
average_observed . 9
average_predicted . 11
bias . 13
effect_importance . 14
fcut . 15
feature_effects . 16
partial_dependence . 21
plot.EffectData . 25
update.EffectData . 27

Index 29

.ale Barebone Accumulated Local Effects (ALE)

Description

This is a barebone implementation of Apley’s ALE. Per bin, the local effect Dj is calculated, and
then accumulated over bins. Dj equals the difference between the partial dependence at the lower
and upper bin breaks using only observations within bin. To plot the values, we can make a line
plot of the resulting vector against upper bin breaks. Alternatively, the vector can be extended from
the left by the value 0, and then plotted against all breaks.

Usage

.ale(
object,
v,
data,
breaks,
right = TRUE,
pred_fun = stats::predict,
trafo = NULL,
which_pred = NULL,
bin_size = 200L,
w = NULL,
g = NULL,
...

)

.ale 3

Arguments

object Fitted model.

v Variable name in data to calculate ALE.

data Matrix or data.frame.

breaks Bin breaks.

right Should bins be right-closed? The default is TRUE. (No effect if g is provided.)

pred_fun Prediction function, by default stats::predict. The function takes three ar-
guments (names irrelevant): object, data, and

trafo How should predictions be transformed? A function or NULL (default). Exam-
ples are log (to switch to link scale) or exp (to switch from link scale to the
original scale). Applied after which_pred.

which_pred If the predictions are multivariate: which column to pick (integer or column
name). By default NULL (picks last column). Applied before trafo.

bin_size Maximal number of observations used per bin. If there are more observations in
a bin, bin_size indices are randomly sampled. The default is 200.

w Optional vector with case weights.

g For internal use. The result of as.factor(findInterval(...)). By default
NULL.

... Further arguments passed to pred_fun(), e.g., type = "response" in a glm()
or (typically) prob = TRUE in classification models.

Value

Vector representing one ALE per bin.

References

Apley, Daniel W., and Jingyu Zhu. 2020. Visualizing the Effects of Predictor Variables in Black
Box Supervised Learning Models. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 82 (4): 1059–1086. doi:10.1111/rssb.12377.

See Also

partial_dependence()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
v <- "Sepal.Width"
.ale(fit, v, data = iris, breaks = seq(2, 4, length.out = 5))

4 .pd

.pd Barebone Partial Dependence

Description

This is a barebone implementation of Friedman’s partial dependence intended for developers. To
get more information on partial dependence, see partial_dependence().

Usage

.pd(
object,
v,
data,
grid,
pred_fun = stats::predict,
trafo = NULL,
which_pred = NULL,
w = NULL,
...

)

Arguments

object Fitted model.

v Variable name in data to calculate partial dependence.

data Matrix or data.frame.

grid Vector or factor of values to calculate partial dependence for.

pred_fun Prediction function, by default stats::predict. The function takes three ar-
guments (names irrelevant): object, data, and

trafo How should predictions be transformed? A function or NULL (default). Exam-
ples are log (to switch to link scale) or exp (to switch from link scale to the
original scale). Applied after which_pred.

which_pred If the predictions are multivariate: which column to pick (integer or column
name). By default NULL (picks last column). Applied before trafo.

w Optional vector with case weights.

... Further arguments passed to pred_fun(), e.g., type = "response" in a glm()
or (typically) prob = TRUE in classification models.

Value

Vector of partial dependence values in the same order as grid.

ale 5

References

Friedman, Jerome H. 2001, Greedy Function Approximation: A Gradient Boosting Machine. An-
nals of Statistics 29 (5): 1189-1232. doi:10.1214/aos/1013203451.

See Also

partial_dependence()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
.pd(fit, "Sepal.Width", data = iris, grid = hist(iris$Sepal.Width)$mids)
.pd(fit, "Species", data = iris, grid = levels(iris$Species))

ale Accumulated Local Effects (ALE)

Description

Calculates ALE for one or multiple continuous features specified by X.

The concept of ALE was introduced in Apley et al. (2020) as an alternative to partial dependence
(PD). The Ceteris Paribus clause behind PD is a blessing and a curse at the same time:

• Blessing: The interpretation is easy and similar to what we know from linear regression (just
averaging out interaction effects).

• Curse: The model is applied to very unlikely or even impossible feature combinations, espe-
cially with strongly dependent features.

ALE fixes the curse as follows: Per bin, the local effect is calculated as the partial dependence
difference between lower and upper bin break, using only observations falling into this bin. This is
repeated for all bins, and the values are accumulated.

ALE values are plotted against right bin breaks.

Usage

ale(object, ...)

Default S3 method:
ale(
object,
v,
data,
pred_fun = stats::predict,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",

6 ale

right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
ale_n = 50000L,
ale_bin_size = 200L,
seed = NULL,
...

)

S3 method for class 'ranger'
ale(
object,
v,
data,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
ale_n = 50000L,
ale_bin_size = 200L,
seed = NULL,
...

)

S3 method for class 'explainer'
ale(
object,
v = colnames(data),
data = object$data,
pred_fun = object$predict_function,
trafo = NULL,
which_pred = NULL,
w = object$weights,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
ale_n = 50000L,
ale_bin_size = 200L,
seed = NULL,
...

)

S3 method for class 'H2OModel'

ale 7

ale(
object,
data,
v = object@parameters$x,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = object@parameters$weights_column$column_name,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
ale_n = 50000L,
ale_bin_size = 200L,
seed = NULL,
...

)

Arguments

object Fitted model.

... Further arguments passed to pred_fun(), e.g., type = "response" in a glm()
or (typically) prob = TRUE in classification models.

v Variable names to calculate statistics for.

data Matrix or data.frame.

pred_fun Prediction function, by default stats::predict. The function takes three ar-
guments (names irrelevant): object, data, and

trafo How should predictions be transformed? A function or NULL (default). Exam-
ples are log (to switch to link scale) or exp (to switch from link scale to the
original scale). Applied after which_pred.

which_pred If the predictions are multivariate: which column to pick (integer or column
name). By default NULL (picks last column). Applied before trafo.

w Optional vector with case weights. Can also be a column name in data. Having
observations with non-positive weight is equivalent to excluding them.

breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of
continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values are treated as discrete
and are therefore dropped from the calculations.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the

8 ale

breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

ale_n Size of the data used for calculating ALE. The default is 50000. For larger data
(and w), ale_n rows are randomly sampled. Each variable specified by v uses
the same sample. Set to 0 to omit ALE calculations.

ale_bin_size Maximal number of observations used per bin for ALE calculations. If there are
more observations in a bin, ale_bin_size indices are randomly sampled. The
default is 200. Applied after sampling regarding ale_n.

seed Optional integer random seed used for:

• ALE: select background data if n > ale_n, and for bins > ale_bin_size.
• Calculating breaks: The bin range is determined without values outside

quartiles +- 2 IQR using a sample of <= 9997 observations to calculate
quartiles.

Details

The function is a convenience wrapper around feature_effects(), which calls the barebone im-
plementation .ale() to calculate ALE.

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

Methods (by class)

• ale(default): Default method.

• ale(ranger): Method for ranger models.

• ale(explainer): Method for DALEX explainers

• ale(H2OModel): Method for H2O models

References

Apley, Daniel W., and Jingyu Zhu. 2020. Visualizing the Effects of Predictor Variables in Black
Box Supervised Learning Models. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 82 (4): 1059–1086. doi:10.1111/rssb.12377.

average_observed 9

See Also

feature_effects(), .ale()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
M <- ale(fit, v = "Petal.Length", data = iris)
M |> plot()

M2 <- ale(fit, v = colnames(iris)[-1], data = iris, breaks = 5)
plot(M2, share_y = "all") # Only continuous variables shown

average_observed Average Observed

Description

Calculates average observed response over the values of one or multiple variables specified by X.
This describes the statistical association between the response y and potential model features.

Usage

average_observed(
X,
y,
w = NULL,
x_name = "x",
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
seed = NULL,
...

)

Arguments

X A vector, matrix, or data.frame with features.

y A numeric vector representing observed response values.

w An optional numeric vector of weights. Having observations with non-positive
weight is equivalent to excluding them.

x_name If X is a vector: what is the name of the variable? By default "x".

breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of
continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

10 average_observed

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values should not be binned
but rather treated as discrete. The default is 13. Vectorized over v.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the
breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

seed Optional integer random seed used for calculating breaks: The bin range is de-
termined without values outside quartiles +- 2 IQR using a sample of <= 9997
observations to calculate quartiles.

... Currently unused.

Details

The function is a convenience wrapper around feature_effects().

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

See Also

feature_effects()

Examples

M <- average_observed(iris$Species, y = iris$Sepal.Length)
M
M |> plot()

Or multiple potential features X
average_observed(iris[2:5], y = iris[, 1], breaks = 5) |>

plot()

average_predicted 11

average_predicted Average Predictions

Description

Calculates average predictions over the values of one or multiple features specified by X. Shows the
combined effect of a feature and other (correlated) features.

Usage

average_predicted(
X,
pred,
w = NULL,
x_name = "x",
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
seed = NULL,
...

)

Arguments

X A vector, matrix, or data.frame with features.

pred A numeric vector of predictions.

w An optional numeric vector of weights. Having observations with non-positive
weight is equivalent to excluding them.

x_name If X is a vector: what is the name of the variable? By default "x".

breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of
continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values should not be binned
but rather treated as discrete. The default is 13. Vectorized over v.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the
breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

12 average_predicted

seed Optional integer random seed used for calculating breaks: The bin range is de-
termined without values outside quartiles +- 2 IQR using a sample of <= 9997
observations to calculate quartiles.

... Currently unused.

Details

The function is a convenience wrapper around feature_effects().

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

References

Apley, Daniel W., and Jingyu Zhu. 2016. Visualizing the Effects of Predictor Variables in Black
Box Supervised Learning Models. Journal of the Royal Statistical Society Series B: Statistical
Methodology, 82 (4): 1059–1086. doi:10.1111/rssb.12377.

See Also

feature_effects()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
M <- average_predicted(iris[2:5], pred = predict(fit, iris), breaks = 5)
M
M |> plot()

bias 13

bias Bias / Average Residuals

Description

Calculates average residuals (= bias) over the values of one or multiple features specified by X.

Usage

bias(
X,
resid,
w = NULL,
x_name = "x",
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
seed = NULL,
...

)

Arguments

X A vector, matrix, or data.frame with features.
resid A numeric vector of residuals, i.e., y - pred.
w An optional numeric vector of weights. Having observations with non-positive

weight is equivalent to excluding them.
x_name If X is a vector: what is the name of the variable? By default "x".
breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of

continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values should not be binned
but rather treated as discrete. The default is 13. Vectorized over v.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the
breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

seed Optional integer random seed used for calculating breaks: The bin range is de-
termined without values outside quartiles +- 2 IQR using a sample of <= 9997
observations to calculate quartiles.

... Currently unused.

14 effect_importance

Details

The function is a convenience wrapper around feature_effects().

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

See Also

feature_effects()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
M <- bias(iris[2:5], resid = fit$residuals, breaks = 5)
M |> update(sort_by = "resid_mean") |> plot(share_y = "all")

effect_importance Variable Importance

Description

Extracts from an "EffectData" object a simple variable importance measure, namely the (bin size
weighted) variance of the partial dependence values, or of any other calculated statistic (e.g., "pred_mean"
or "y_mean"). It can be used via update.EffectData(, sort_by = "pd") to sort the variables in
decreasing importance. Note that this measure captures only the main effect strength. If the impor-
tance is calculated with respect to "pd", it is closely related to the suggestion of Greenwell et al.
(2018).

Usage

effect_importance(x, by = NULL)

fcut 15

Arguments

x Object of class "EffectData".

by The statistic used to calculate the variance for. One of ’pd’, ’pred_mean’,
’y_mean’, ’resid_mean’, or ’ale’ (if available). The default is NULL, which picks
the first available statistic from above list.

Value

A named vector of importance values of the same length as x.

References

Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. 2018. A Simple and
Effective Model-Based Variable Importance Measure. arXiv preprint. https://arxiv.org/abs/
1805.04755.

See Also

update.EffectData()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
M <- feature_effects(fit, v = colnames(iris)[-1], data = iris)
effect_importance(M)

fcut Fast cut()

Description

Bins a numeric vector x into bins specified by breaks. Values outside the range of breaks will
be placed in the lowest or highest bin. Set labels = FALSE to return integer codes only, and
explicit_na = TRUE for maximal synergy with the "collapse" package. Uses the logic of spatstat.utils::fastFindInterval()
for equi-length bins.

Usage

fcut(x, breaks, labels = NULL, right = TRUE, explicit_na = FALSE)

Arguments

x A numeric vector.

breaks A monotonically increasing numeric vector of breaks.

labels A character vector of length length(breaks) - 1 with bin labels. By default
(NULL), the levels c("1", "2", ...) are used. Set to FALSE to return raw integer
codes.

https://arxiv.org/abs/1805.04755
https://arxiv.org/abs/1805.04755

16 feature_effects

right Right closed bins (TRUE, default) or not?

explicit_na If TRUE, missing values are encoded by the bin value length(breaks), hav-
ing NA as corresponding factor level. The factor will get the additional class
"na.included".

Value

Binned version of x. Either a factor, or integer codes.

Examples

x <- c(NA, 1:10)
fcut(x, breaks = c(3, 5, 7))
fcut(x, breaks = c(3, 5, 7), right = FALSE)
fcut(x, breaks = c(3, 5, 7), labels = FALSE)

feature_effects Feature Effects

Description

This is the main function of the package. By default, it calculates the following statistics per feature
X over values/bins:

• "y_mean": Average observed y values. Used to assess descriptive associations between re-
sponse and features.

• "pred_mean": Average predictions. Corresponds to "M Plots" (from "marginal") in Apley
(2020). Shows the combined effect of X and other (correlated) features. The difference to
average observed y values shows model bias.

• "resid_mean": Average residuals. Calculated when both y and predictions are available. Use-
ful to study model bias.

• "pd": Partial dependence (Friedman, 2001): See partial_dependence(). Evaluated at bin
averages, not at bin midpoints.

• "ale": Accumulated local effects (Apley, 2020): See ale(). Only for continuous features.

Additionally, corresponding counts/weights are calculated, and standard deviations of observed y
and residuals.

Numeric features with more than discrete_m = 13 disjoint values are binned via breaks. If breaks
is a single integer or "Sturges", the total bin range is calculated without values outside +-2 IQR from
the quartiles. Values outside the bin range are placed in the outermost bins. Note that at most 9997
observations are used to calculate quartiles and IQR.

All averages and standard deviation are weighted by optional weights w.

If you need only one specific statistic, you can use the simplified APIs of

• average_observed(),

feature_effects 17

• average_predicted(),

• bias(),

• partial_dependence(), and

• ale().

Usage

feature_effects(object, ...)

Default S3 method:
feature_effects(
object,
v,
data,
y = NULL,
pred = NULL,
pred_fun = stats::predict,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
calc_pred = TRUE,
pd_n = 500L,
ale_n = 50000L,
ale_bin_size = 200L,
seed = NULL,
...

)

S3 method for class 'ranger'
feature_effects(
object,
v,
data,
y = NULL,
pred = NULL,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
calc_pred = TRUE,

18 feature_effects

pd_n = 500L,
ale_n = 50000L,
ale_bin_size = 200L,
...

)

S3 method for class 'explainer'
feature_effects(
object,
v = colnames(data),
data = object$data,
y = object$y,
pred = NULL,
pred_fun = object$predict_function,
trafo = NULL,
which_pred = NULL,
w = object$weights,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
calc_pred = TRUE,
pd_n = 500L,
ale_n = 50000L,
ale_bin_size = 200L,
...

)

S3 method for class 'H2OModel'
feature_effects(
object,
data,
v = object@parameters$x,
y = NULL,
pred = NULL,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = object@parameters$weights_column$column_name,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
calc_pred = TRUE,
pd_n = 500L,
ale_n = 50000L,
ale_bin_size = 200L,
...

feature_effects 19

)

Arguments

object Fitted model.

... Further arguments passed to pred_fun(), e.g., type = "response" in a glm()
or (typically) prob = TRUE in classification models.

v Variable names to calculate statistics for.

data Matrix or data.frame.

y Numeric vector with observed values of the response. Can also be a column
name in data. Omitted if NULL (default).

pred Pre-computed predictions (as from predict()/pred_fun()). If NULL, it is calculated as pred_fun(object,
data, ...)‘.

pred_fun Prediction function, by default stats::predict. The function takes three ar-
guments (names irrelevant): object, data, and

trafo How should predictions be transformed? A function or NULL (default). Exam-
ples are log (to switch to link scale) or exp (to switch from link scale to the
original scale). Applied after which_pred.

which_pred If the predictions are multivariate: which column to pick (integer or column
name). By default NULL (picks last column). Applied before trafo.

w Optional vector with case weights. Can also be a column name in data. Having
observations with non-positive weight is equivalent to excluding them.

breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of
continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values should not be binned
but rather treated as discrete. The default is 13. Vectorized over v.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the
breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

calc_pred Should predictions be calculated? Default is TRUE. Only relevant if pred = NULL.

pd_n Size of the data used for calculating partial dependence. The default is 500. For
larger data (and w), pd_n rows are randomly sampled. Each variable specified
by v uses the same sample. Set to 0 to omit PD calculations.

ale_n Size of the data used for calculating ALE. The default is 50000. For larger data
(and w), ale_n rows are randomly sampled. Each variable specified by v uses
the same sample. Set to 0 to omit ALE calculations.

20 feature_effects

ale_bin_size Maximal number of observations used per bin for ALE calculations. If there are
more observations in a bin, ale_bin_size indices are randomly sampled. The
default is 200. Applied after sampling regarding ale_n.

seed Optional integer random seed used for:

• Partial dependence: select background data if n > pd_n.
• ALE: select background data if n > ale_n, and for bins > ale_bin_size.
• Calculating breaks: The bin range is determined without values outside

quartiles +- 2 IQR using a sample of <= 9997 observations to calculate
quartiles.

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

Methods (by class)

• feature_effects(default): Default method.

• feature_effects(ranger): Method for ranger models.

• feature_effects(explainer): Method for DALEX explainer.

• feature_effects(H2OModel): Method for H2O models.

References

1. Molnar, Christoph. 2019. Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. https://christophm.github.io/interpretable-ml-book/.

2. Friedman, Jerome H. 2001, Greedy Function Approximation: A Gradient Boosting Machine.
Annals of Statistics 29 (5): 1189-1232. doi:10.1214/aos/1013203451.3.

3. Apley, Daniel W., and Jingyu Zhu. 2016. Visualizing the Effects of Predictor Variables in
Black Box Supervised Learning Models. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 82 (4): 1059–1086. doi:10.1111/rssb.12377.

See Also

plot.EffectData(), update.EffectData(), partial_dependence(), ale(), average_observed,
average_predicted(), bias()

https://christophm.github.io/interpretable-ml-book/

partial_dependence 21

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
xvars <- colnames(iris)[2:5]
M <- feature_effects(fit, v = xvars, data = iris, y = "Sepal.Length", breaks = 5)
M
M |> update(sort = "pd") |> plot(share_y = "all")

partial_dependence Partial Dependence

Description

Calculates PD for one or multiple features.

PD was introduced by Friedman (2001) to study the (main) effects of a ML model. PD of a model f
and variable X at a certain value g is derived by replacing the X values in a reference data by g, and
then calculating the average prediction of f over this modified data. This is done for different g to
see how the average prediction of f changes in X, keeping all other feature values constant (Ceteris
Paribus).

This function is a convenience wrapper around feature_effects(), which calls the barebone
implementation .pd() to calculate PD. As grid points, it uses the arithmetic mean of X per bin
(specified by breaks), and eventually weighted by w.

Usage

partial_dependence(object, ...)

Default S3 method:
partial_dependence(
object,
v,
data,
pred_fun = stats::predict,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
pd_n = 500L,
seed = NULL,
...

)

S3 method for class 'ranger'
partial_dependence(

22 partial_dependence

object,
v,
data,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = NULL,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
pd_n = 500L,
seed = NULL,
...

)

S3 method for class 'explainer'
partial_dependence(
object,
v = colnames(data),
data = object$data,
pred_fun = object$predict_function,
trafo = NULL,
which_pred = NULL,
w = object$weights,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
pd_n = 500L,
seed = NULL,
...

)

S3 method for class 'H2OModel'
partial_dependence(
object,
data,
v = object@parameters$x,
pred_fun = NULL,
trafo = NULL,
which_pred = NULL,
w = object@parameters$weights_column$column_name,
breaks = "Sturges",
right = TRUE,
discrete_m = 13L,
outlier_iqr = 2,
pd_n = 500L,

partial_dependence 23

seed = NULL,
...

)

Arguments

object Fitted model.

... Further arguments passed to pred_fun(), e.g., type = "response" in a glm()
or (typically) prob = TRUE in classification models.

v Variable names to calculate statistics for.

data Matrix or data.frame.

pred_fun Prediction function, by default stats::predict. The function takes three ar-
guments (names irrelevant): object, data, and

trafo How should predictions be transformed? A function or NULL (default). Exam-
ples are log (to switch to link scale) or exp (to switch from link scale to the
original scale). Applied after which_pred.

which_pred If the predictions are multivariate: which column to pick (integer or column
name). By default NULL (picks last column). Applied before trafo.

w Optional vector with case weights. Can also be a column name in data. Having
observations with non-positive weight is equivalent to excluding them.

breaks An integer, vector, or "Sturges" (the default) used to determine bin breaks of
continuous features. Values outside the total bin range are placed in the outmost
bins. To allow varying values of breaks across features, breaks can be a list of
the same length as v, or a named list with breaks for certain variables.

right Should bins be right-closed? The default is TRUE. Vectorized over v. Only
relevant for continuous features.

discrete_m Numeric features with up to this number of unique values should not be binned
but rather treated as discrete. The default is 13. Vectorized over v.

outlier_iqr If breaks is an integer or "Sturges", the breaks of a continuous feature are calcu-
lated without taking into account feature values outside quartiles +- outlier_iqr
* IQR (where <= 9997 values are used to calculate the quartiles). To let the
breaks cover the full data range, set outlier_iqr to 0 or Inf. Vectorized over
v.

pd_n Size of the data used for calculating partial dependence. The default is 500. For
larger data (and w), pd_n rows are randomly sampled. Each variable specified
by v uses the same sample. Set to 0 to omit PD calculations.

seed Optional integer random seed used for:

• Partial dependence: select background data if n > pd_n.

• Calculating breaks: The bin range is determined without values outside
quartiles +- 2 IQR using a sample of <= 9997 observations to calculate
quartiles.

24 partial_dependence

Value

A list (of class "EffectData") with a data.frame per feature having columns:

• bin_mid: Bin mid points. In the plots, the bars are centered around these.

• bin_width: Absolute width of the bin. In the plots, these equal the bar widths.

• bin_mean: For continuous features, the (possibly weighted) average feature value within bin.
For discrete features equivalent to bin_mid.

• N: The number of observations within bin.

• weight: The weight sum within bin. When w = NULL, equivalent to N.

• Different statistics, depending on the function call.

Use single bracket subsetting to select part of the output. Note that each data.frame contains an
attribute "discrete" with the information whether the feature is discrete or continuous. This attribute
might be lost when you manually modify the data.frames.

Methods (by class)

• partial_dependence(default): Default method.

• partial_dependence(ranger): Method for ranger models.

• partial_dependence(explainer): Method for DALEX explainers.

• partial_dependence(H2OModel): Method for H2O models.

References

Friedman, Jerome H. 2001, Greedy Function Approximation: A Gradient Boosting Machine. An-
nals of Statistics 29 (5): 1189-1232. doi:10.1214/aos/1013203451.

See Also

feature_effects(), .pd(), ale().

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
M <- partial_dependence(fit, v = "Species", data = iris)
M |> plot()

M2 <- partial_dependence(fit, v = colnames(iris)[-1], data = iris)
plot(M2, share_y = "all")

plot.EffectData 25

plot.EffectData Plots "EffectData" Object

Description

Versatile plot function for an "EffectData" object. By default, all calculated statistics (except
"resid_mean") are shown. To select certain statistics, use the stats argument. Set plotly = TRUE
for interactive plots. Note that all statistics are plotted at bin means, except for ALE (shown at right
bin breaks).

Usage

S3 method for class 'EffectData'
plot(
x,
stats = NULL,
ncol = grDevices::n2mfrow(length(x))[2L],
byrow = TRUE,
share_y = c("no", "all", "rows", "cols"),
ylim = NULL,
discrete_lines = TRUE,
continuous_points = FALSE,
title = "",
subplot_titles = TRUE,
ylab = NULL,
legend_labels = NULL,
interval = c("no", "ci", "ciw", "sd"),
ci_level = 0.95,
colors = getOption("effectplots.colors"),
fill = getOption("effectplots.fill"),
alpha = 1,
bar_height = 1,
bar_width = 1,
bar_measure = c("weight", "N"),
wrap_x = 10,
rotate_x = 0,
plotly = getOption("effectplots.plotly"),
...

)

Arguments

x An object of class "EffectData".

stats Vector of statistics to show. The default NULL equals either c("y_mean", "pred_mean",
"pd", "ale"), or "resid_mean" (when x results from bias()). Only available
statistics are shown. Additionally, this argument controls the order used to plot
the lines.

26 plot.EffectData

ncol Number of columns of the plot layout, by default grDevices::n2mfrow(length(x))[2L].
Only relevant for multiple plots.

byrow Should plots be placed by row? Default is TRUE. Only for multiple plots.

share_y Should y axis be shared across subplots? The default is "no". Other choices
are "all", "rows", and "cols". Note that this currently does not take into account
error bars/ribbons. Has no effect if ylim is passed. Only for multiple plots.

ylim A vector of length 2 with manual y axis limits, or a list thereof.

discrete_lines Show lines for discrete features. Default is TRUE.
continuous_points

Show points for continuous features. Default is FALSE.

title Overall plot title, by default "" (no title).

subplot_titles Should variable names be shown as subplot titles? Default is TRUE. Only for
multiple plots.

ylab Label of the y axis. The default NULL automatically derives a reasonable name.

legend_labels Vector of legend labels in the same order as the statistics plotted, or NULL (de-
fault).

interval What intervals should be shown for observed y and residuals? One of

• "no" (default),
• "ci": Z confidence intervals using sqrt(N) as standard error of the mean,
• "ciw": Like "ci", but using sqrt(weight) as standard error of the mean, or
• "sd": standard deviations. Ribbons for continuous features, and error bars

otherwise.

ci_level The nominal level of the Z confidence intervals (only when error equals "ci" or
"ciw"). The default is 0.95.

colors Vector of line/point colors of sufficient length. By default, a color blind friendly
palette from "ggthemes". To change globally, set options(effectplots.colors = new colors).

fill Fill color of bars. The default equals "lightgrey". To change globally, set
options(effectplots.fill = new color).

alpha Alpha transparency of lines and points. Default is 1.

bar_height Relative bar height (default 1). Set to 0 for no bars.

bar_width Bar width multiplier (for discrete features). By default 1.

bar_measure What should bars represent? Either "weight" (default) or "N".

wrap_x Should categorical x axis labels be wrapped after this length? The default is 10.
Set to 0 for no wrapping. Vectorized over x. Only for "ggplot2" backend.

rotate_x Should categorical xaxis labels be rotated by this angle? The default is 0 (no
rotation). Vectorized over x. Only for "ggplot2" backend.

plotly Should ’plotly’ be used? The default is FALSE (’ggplot2’ with ’patchwork’).
Use options(effectplots.plotly = TRUE) to change globally.

... Passed to patchwork::plot_layout() or plotly::subplot(). Typically not
used.

update.EffectData 27

Value

If a single plot, an object of class "ggplot" or "plotly". Otherwise, an object of class "patchwork",
or a "plotly" subplot.

See Also

feature_effects(), average_observed(), average_predicted(), partial_dependence(), bias(),
ale()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
xvars <- colnames(iris)[-1]
M <- feature_effects(fit, v = xvars, data = iris, y = "Sepal.Length", breaks = 5)
plot(M, share_y = "all")
plot(M, stats = c("pd", "ale"), legend_labels = c("PD", "ALE"))
plot(M, stats = "resid_mean", share_y = "all", interval = "ci")

update.EffectData Update "EffectData" Object

Description

Updates an "EffectData" object by

• turning discrete values to factor (especially useful with the next option),

• collapsing levels of categorical variables with many levels,

• dropping empty bins,

• dropping small bins,

• dropping bins with missing name, or

• sorting the variables by their importance, see effect_importance()-

Except for sort_by, all arguments are vectorized, i.e., you can pass a vector or list of the same
length as object.

Usage

S3 method for class 'EffectData'
update(
object,
sort_by = c("no", "pd", "pred_mean", "y_mean", "resid_mean", "ale"),
to_factor = FALSE,
collapse_m = 30L,
collapse_by = c("weight", "N"),
drop_empty = FALSE,
drop_below_n = 0,

28 update.EffectData

drop_below_weight = 0,
na.rm = FALSE,
...

)

Arguments

object Object of class "EffectData".

sort_by By which statistic ("pd", "pred_mean", "y_mean", "resid_mean", "ale") should
the results be sorted? The default is "no" (no sorting). Calculated after all other
update steps, e.g., after collapsing or dropping rare levels.

to_factor Should discrete features be treated as factors? In combination with collapse_m,
this can be used to collapse rare values of discrete numeric features.

collapse_m If a factor or character feature has more than collapse_m levels, rare levels are
collapsed into a new level "other". Standard deviations are collapsed via root of
the weighted average variances. The default is 30. Set to Inf for no collapsing.

collapse_by How to determine "rare" levels in collapse_m? Either "weight" (default) or
"N". Only matters in situations with case weights w.

drop_empty Drop empty bins. Equivalent to drop_below_n = 1.

drop_below_n Drop bins with N below this value. Applied after collapsing.
drop_below_weight

Drop bins with weight below this value. Applied after collapsing.

na.rm Should missing bin centers be dropped? Default is FALSE.

... Currently not used.

Value

A modified object of class "EffectData".

See Also

feature_effects(), average_observed(), average_predicted(), partial_dependence(), ale(),
bias(), effect_importance()

Examples

fit <- lm(Sepal.Length ~ ., data = iris)
xvars <- colnames(iris)[-1]
feature_effects(fit, v = xvars, data = iris, y = "Sepal.Length", breaks = 5) |>

update(sort = "pd", collapse_m = 2) |>
plot()

Index

.ale, 2

.ale(), 8, 9

.pd, 4

.pd(), 21, 24

ale, 5
ale(), 16, 17, 20, 24, 27, 28
average_observed, 9, 20
average_observed(), 16, 27, 28
average_predicted, 11
average_predicted(), 17, 20, 27, 28

bias, 13
bias(), 17, 20, 25, 27, 28

effect_importance, 14
effect_importance(), 27, 28

fcut, 15
feature_effects, 16
feature_effects(), 8–10, 12, 14, 21, 24, 27,

28

partial_dependence, 21
partial_dependence(), 3–5, 16, 17, 20, 27,

28
plot.EffectData, 25
plot.EffectData(), 20

update.EffectData, 27
update.EffectData(), 15, 20

29

	.ale
	.pd
	ale
	average_observed
	average_predicted
	bias
	effect_importance
	fcut
	feature_effects
	partial_dependence
	plot.EffectData
	update.EffectData
	Index

