
Package ‘metan’
December 15, 2024

Type Package

Title Multi Environment Trials Analysis

Version 1.19.0

Maintainer Tiago Olivoto <tiagoolivoto@gmail.com>

Description Performs stability analysis of multi-environment trial data
using parametric and non-parametric methods. Parametric methods
includes Additive Main Effects and Multiplicative Interaction (AMMI)
analysis by Gauch (2013) <doi:10.2135/cropsci2013.04.0241>, Ecovalence
by Wricke (1965), Genotype plus Genotype-Environment (GGE) biplot
analysis by Yan & Kang (2003) <doi:10.1201/9781420040371>, geometric
adaptability index by Mohammadi & Amri (2008)
<doi:10.1007/s10681-007-9600-6>, joint regression analysis by Eberhart
& Russel (1966) <doi:10.2135/cropsci1966.0011183X000600010011x>,
genotypic confidence index by Annicchiarico (1992), Murakami & Cruz's
(2004) method, power law residuals (POLAR) statistics by Doring et al.
(2015) <doi:10.1016/j.fcr.2015.08.005>, scale-adjusted coefficient of
variation by Doring & Reckling (2018) <doi:10.1016/j.eja.2018.06.007>,
stability variance by Shukla (1972) <doi:10.1038/hdy.1972.87>,
weighted average of absolute scores by Olivoto et al. (2019a)
<doi:10.2134/agronj2019.03.0220>, and multi-trait stability index by
Olivoto et al. (2019b) <doi:10.2134/agronj2019.03.0221>.
Non-parametric methods includes superiority index by Lin & Binns
(1988) <doi:10.4141/cjps88-018>, nonparametric measures of phenotypic
stability by Huehn (1990) <doi:10.1007/BF00024241>, TOP third
statistic by Fox et al. (1990) <doi:10.1007/BF00040364>. Functions for
computing biometrical analysis such as path analysis, canonical
correlation, partial correlation, clustering analysis, and tools for
inspecting, manipulating, summarizing and plotting typical
multi-environment trial data are also provided.

License GPL-3

URL https://github.com/nepem-ufsc/metan,

https://nepem-ufsc.github.io/metan/

BugReports https://github.com/nepem-ufsc/metan/issues

1

https://doi.org/10.2135/cropsci2013.04.0241
https://doi.org/10.1201/9781420040371
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.2135/cropsci1966.0011183X000600010011x
https://doi.org/10.1016/j.fcr.2015.08.005
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1038/hdy.1972.87
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2134/agronj2019.03.0221
https://doi.org/10.4141/cjps88-018
https://doi.org/10.1007/BF00024241
https://doi.org/10.1007/BF00040364
https://github.com/nepem-ufsc/metan
https://nepem-ufsc.github.io/metan/
https://github.com/nepem-ufsc/metan/issues

2 Contents

Depends R (>= 4.1.0)

Imports dplyr (>= 1.0.0), GGally, ggforce, ggplot2 (>= 3.3.0),
ggrepel, lme4, lmerTest, magrittr, mathjaxr, methods,
patchwork, purrr, rlang (>= 0.4.11), tibble, tidyr, tidyselect
(>= 1.0.0)

Suggests DT, knitr, rmarkdown, roxygen2, rstudioapi

VignetteBuilder knitr

RdMacros mathjaxr

Encoding UTF-8

Language en-US

LazyData true

LazyLoad true

RoxygenNote 7.3.2

NeedsCompilation no

Author Tiago Olivoto [aut, cre, cph] (<https://orcid.org/0000-0002-0241-9636>)

Repository CRAN

Date/Publication 2024-12-15 01:00:02 UTC

Contents
acv . 6
ammi_indexes . 8
Annicchiarico . 11
anova_ind . 12
anova_joint . 14
arrange_ggplot . 16
as.lpcor . 17
barplots . 18
bind_cv . 23
blup_indexes . 24
can_corr . 26
clustering . 28
coincidence_index . 31
colindiag . 32
comb_vars . 33
correlated_vars . 34
corr_ci . 35
corr_coef . 37
corr_focus . 39
corr_plot . 39
corr_ss . 43
corr_stab_ind . 44
covcor_design . 45
cv_ammi . 47

https://orcid.org/0000-0002-0241-9636

Contents 3

cv_ammif . 49
cv_blup . 51
data_alpha . 53
data_g . 54
data_ge . 55
data_ge2 . 56
data_simula . 57
desc_stat . 59
doo . 62
ecovalence . 63
env_dissimilarity . 64
env_stratification . 66
fai_blup . 67
find_outliers . 69
Fox . 70
gafem . 71
gai . 73
gamem . 75
gamem_met . 78
get_corvars . 81
get_covmat . 82
get_dist . 83
get_model_data . 84
ge_acv . 91
ge_cluster . 93
ge_details . 95
ge_effects . 96
ge_factanal . 97
ge_means . 98
ge_plot . 99
ge_polar . 101
ge_reg . 102
ge_stats . 103
ge_winners . 106
gge . 108
gtb . 110
gytb . 112
Huehn . 114
impute_missing_val . 115
inspect . 117
int.effects . 119
is.lpcor . 119
is_balanced_trial . 120
lineplots . 121
lpcor . 123
mahala . 125
mahala_design . 126
make_long . 127

4 Contents

make_mat . 128
mantel_test . 129
meansGxE . 130
metan . 130
mgidi . 131
mps . 134
mtmps . 138
mtsi . 141
network_plot . 143
non_collinear_vars . 145
pairs_mantel . 146
path_coeff . 149
performs_ammi . 152
plaisted_peterson . 154
plot.anova_joint . 155
plot.can_cor . 156
plot.clustering . 158
plot.correlated_vars . 159
plot.corr_coef . 160
plot.cvalidation . 162
plot.env_dissimilarity . 164
plot.env_stratification . 165
plot.fai_blup . 166
plot.gafem . 167
plot.gamem . 168
plot.ge_cluster . 170
plot.ge_effects . 171
plot.ge_factanal . 172
plot.ge_reg . 174
plot.gge . 176
plot.mgidi . 179
plot.mtmps . 181
plot.mtsi . 183
plot.path_coeff . 185
plot.performs_ammi . 186
plot.resp_surf . 187
plot.sh . 188
plot.waas . 189
plot.waasb . 190
plot.wsmp . 193
plot_blup . 194
plot_ci . 196
plot_eigen . 198
plot_scores . 200
plot_waasby . 205
predict.gamem . 207
predict.gge . 208
predict.performs_ammi . 209

Contents 5

predict.waas . 210
predict.waasb . 211
print.ammi_indexes . 212
print.Annicchiarico . 213
print.anova_ind . 214
print.anova_joint . 214
print.can_cor . 215
print.coincidence . 216
print.colindiag . 217
print.corr_coef . 217
print.ecovalence . 218
print.env_dissimilarity . 219
print.env_stratification . 220
print.Fox . 221
print.gamem . 221
print.ge_factanal . 222
print.ge_reg . 223
print.ge_stats . 224
print.Huehn . 225
print.lpcor . 225
print.mgidi . 226
print.mtmps . 227
print.mtsi . 228
print.path_coeff . 229
print.performs_ammi . 230
print.plaisted_peterson . 230
print.Schmildt . 231
print.sh . 232
print.Shukla . 233
print.superiority . 234
print.Thennarasu . 235
print.waas . 235
print.waasb . 236
print.waas_means . 237
reorder_cormat . 238
resca . 239
residual_plots . 240
resp_surf . 242
Schmildt . 243
Select_helper . 245
select_pred . 247
Shukla . 248
Smith_Hazel . 249
solve_svd . 251
split_factors . 252
stars_pval . 253
superiority . 254
themes . 255

6 acv

Thennarasu . 256
transpose_df . 257
tukey_hsd . 258
utils_as . 259
utils_bind . 260
utils_class . 261
utils_data . 262
utils_data_org . 263
utils_mat . 265
utils_na_zero . 266
utils_num_str . 268
utils_progress . 272
utils_rows_cols . 274
utils_samples . 279
utils_sets . 280
utils_stats . 281
utils_wd . 286
venn_plot . 287
waas . 289
waasb . 292
waas_means . 297
wsmp . 300

Index 302

acv Adjusted Coefficient of Variation

Description

[Stable]
Computes the scale-adjusted coefficient of variation, acv, (Doring and Reckling, 2018) to account
for the systematic dependence of σ2 from µ. The acv is computed as follows:

acv =

√
10ṽi

µi
× 100

where ṽi is the adjusted logarithm of the variance computed as:

ṽi = a+ (b− 2)
1

n

∑
mi + 2mi + ei

being a and b the coefficients of the linear regression for log10 of the variance over the log10 of the
mean; mi is the log10 of the mean, and ei is the Power Law Residuals (POLAR), i.e., the residuals
for the previously described regression.

Usage

acv(mean, var, na.rm = FALSE)

acv 7

Arguments

mean A numeric vector with mean values.

var A numeric vector with variance values.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

Value

A tibble with the following columns

• mean The mean values.

• var The variance values;

• log10_mean The base 10 logarithm of mean;

• log10_var The base 10 logarithm of variance;

• POLAR The Power Law Residuals;

• cv The standard coefficient of variation;

• acv Adjusted coefficient of variation.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting
the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Examples

################# Table 1 from Doring and Reckling (2018) ###########

Mean values
u <- c(0.5891, 0.6169, 0.7944, 1.0310, 1.5032, 3.8610, 4.6969, 6.1148,

7.1526, 7.5348, 1.2229, 1.6321, 2.4293, 2.5011, 3.0161)

Variances
v <- c(0.0064, 0.0141, 0.0218, 0.0318, 0.0314, 0.0766, 0.0620, 0.0822,

0.1605, 0.1986, 0.0157, 0.0593, 0.0565, 0.1997, 0.2715)

library(metan)
acv(u, v)

https://doi.org/10.1016/j.eja.2018.06.007

8 ammi_indexes

ammi_indexes AMMI-based stability indexes

Description

• ammi_indexes() [Stable] computes several AMMI-based stability statistics. See Details for
a detailed overview.

• AMMI_indexes() [Deprecated] use ammi_indexes() instead.

Usage

ammi_indexes(.data, order.y = NULL, level = 0.95)

Arguments

.data An object of class waas or performs_ammi

order.y A vector of the same length of x used to order the response variable. Each
element of the vector must be one of the 'h' or 'l'. If 'h' is used, the response
variable will be ordered from maximum to minimum. If 'l' is used then the
response variable will be ordered from minimum to maximum. Use a comma-
separated vector of names. For example, order.y = c("h, h, l, h, l").

level The confidence level. Defaults to 0.95.

Details

First, let’s define some symbols: N ′ is the number of significant interation principal component
axis (IPCs) that were retained in the AMMI model via F tests); λn is the singular value for th IPC
and correspondingly λ2

n its eigen value; γin is the eigenvector value for ith genotype; δjn is the
eigenvector value for the th environment. PC1, PC2, and PCn are the scores of 1st, 2nd, and nth
IPC; respectively; θ1, θ2, and θn are percentage sum of squares explained by the 1st, 2nd, and nth
IPC, respectively.

• AMMI Based Stability Parameter (ASTAB) (Rao and Prabhakaran 2005).

ASTAB =

N ′∑
n=1

λnγ
2
in

• AMMI Stability Index (ASI) (Jambhulkar et al. 2017)

ASI =
√
[PC2

1 × θ21] + [PC2
2 × θ22]

• AMMI-stability value (ASV) (Purchase et al., 2000).

ASVi =

√
SSIPCA1

SSIPCA2
(IPCA1)2 + (IPCA2)2

ammi_indexes 9

• Sum Across Environments of Absolute Value of GEI Modelled by AMMI (AVAMGE) (Zali
et al. 2012)

AV(AMGE) =

E∑
j=1

N ′∑
n=1

|λnγinδjn|

• Annicchiarico’s D Parameter values (Da) (Annicchiarico 1997)

Da =

√√√√ N ′∑
n=1

(λnγin)2

• Zhang’s D Parameter (Dz) (Zhang et al. 1998)

Dz =

√√√√ N ′∑
n=1

γ2
in

• Sums of the Averages of the Squared Eigenvector Values (EV) (Zobel 1994)

EV =

N ′∑
n=1

γ2
in

N ′

• Stability Measure Based on Fitted AMMI Model (FA) (Raju 2002)

FA =

N ′∑
n=1

λ2
nγ

2
in

• Modified AMMI Stability Index (MASI) (Ajay et al. 2018)

MASI =

√√√√ N ′∑
n=1

PC2
n × θ2n

• Modified AMMI Stability Value (MASV) (Ajay et al. 2019)

MASV =

√√√√N ′−1∑
n=1

(
SSIPCn

SSIPCn+1

)
× (PCn)2 + (PCN ′)

2

• Sums of the Absolute Value of the IPC Scores (SIPC) (Sneller et al. 1997)

SIPC =

N ′∑
n=1

|λ0.5
n γin|

• Absolute Value of the Relative Contribution of IPCs to the Interaction (Za) (Zali et al. 2012)

Za =

N ′∑
i=1

|θnγin|

• Weighted average of absolute scores (WAAS) (Olivoto et al. 2019)

WAASi =

p∑
k=1

|IPCAik × θk/

p∑
k=1

θk

For all the statistics, simultaneous selection indexes (SSI) are also computed by summation of the
ranks of the stability and mean performance, Y_R, (Farshadfar, 2008).

10 ammi_indexes

Value

A list where each element contains the result AMMI-based stability indexes for one variable.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Ajay BC, Aravind J, Abdul Fiyaz R, Bera SK, Kumar N, Gangadhar K, Kona P (2018). “Modified
AMMI Stability Index (MASI) for stability analysis.” ICAR-DGR Newsletter, 18, 4–5.

Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK
(2019). “Rectification of modified AMMI stability value (MASV).” Indian Journal of Genetics and
Plant Breeding (The), 79, 726–731. https://www.isgpb.org/article/rectification-of-modified-ammi-
stability-value-masv.

Annicchiarico P (1997). “Joint regression vs AMMI analysis of genotype-environment interactions
for cereals in Italy.” Euphytica, 94(1), 53–62. doi:10.1023/A:1002954824178

Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric
index (GSI) in bread wheat. Pakistan J Biol Sci 11:1791–1796. doi:10.3923/pjbs.2008.1791.1796

Jambhulkar NN, Rath NC, Bose LK, Subudhi HN, Biswajit M, Lipi D, Meher J (2017). “Stability
analysis for grain yield in rice in demonstrations conducted during rabi season in India.” Oryza,
54(2), 236–240. doi:10.5958/22495266.2017.00030.3

Olivoto T, LUcio ADC, Silva JAG, et al (2019) Mean Performance and Stability in Multi-Environment
Trials I: Combining Features of AMMI and BLUP Techniques. Agron J 111:2949–2960. doi:10.2134/
agronj2019.03.0220

Raju BMK (2002). “A study on AMMI model and its biplots.” Journal of the Indian Society of
Agricultural Statistics, 55(3), 297–322.

Rao AR, Prabhakaran VT (2005). “Use of AMMI in simultaneous selection of genotypes for yield
and stability.” Journal of the Indian Society of Agricultural Statistics, 59, 76–82.

Sneller CH, Kilgore-Norquest L, Dombek D (1997). “Repeatability of yield stability statistics in
soybean.” Crop Science, 37(2), 383–390. doi:10.2135/cropsci1997.0011183X003700020013x

Zali H, Farshadfar E, Sabaghpour SH, Karimizadeh R (2012). “Evaluation of genotype × environ-
ment interaction in chickpea using measures of stability from AMMI model.” Annals of Biological
Research, 3(7), 3126–3136.

Zhang Z, Lu C, Xiang Z (1998). “Analysis of variety stability based on AMMI model.” Acta
Agronomica Sinica, 24(3), 304–309. http://zwxb.chinacrops.org/EN/Y1998/V24/I03/304.

Zobel RW (1994). “Stress resistance and root systems.” In Proceedings of the Workshop on Adap-
tation of Plants to Soil Stress. 1-4 August, 1993. INTSORMIL Publication 94-2, 80–99. Institute
of Agriculture and Natural Resources, University of Nebraska-Lincoln.

Examples

library(metan)
model <-

performs_ammi(data_ge,

https://doi.org/10.1023/A%3A1002954824178
https://doi.org/10.3923/pjbs.2008.1791.1796
https://doi.org/10.5958/2249-5266.2017.00030.3
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2135/cropsci1997.0011183X003700020013x

Annicchiarico 11

env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

model_indexes <- ammi_indexes(model)

Alternatively (and more intuitively) using %>%
If resp is not declared, all traits are analyzed
res_ind <- data_ge %>%

performs_ammi(ENV, GEN, REP, verbose = FALSE) %>%
ammi_indexes()

rbind_fill_id(res_ind, .id = "TRAIT")

Annicchiarico Annicchiarico’s genotypic confidence index

Description

[Stable]

Stability analysis using the known genotypic confidence index (Annicchiarico, 1992).

Usage

Annicchiarico(.data, env, gen, rep, resp, prob = 0.25, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

prob The probability of error assumed.

verbose Logical argument. If verbose = FALSE the code will run silently.

12 anova_ind

Value

A list where each element is the result for one variable and contains the following data frames:

• environments Contains the mean, environmental index and classification as favorable and
unfavorable environments.

• general Contains the genotypic confidence index considering all environments.

• favorable Contains the genotypic confidence index considering favorable environments.

• unfavorable Contains the genotypic confidence index considering unfavorable environments.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern
Italy. J. Genet. Breed. 46:269-278.

See Also

superiority(), ecovalence(), ge_stats()

Examples

library(metan)
Ann <- Annicchiarico(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

print(Ann)

anova_ind Within-environment analysis of variance

Description

[Stable]
Performs a within-environment analysis of variance in randomized complete block or alpha-lattice
designs and returns values such as Mean Squares, p-values, coefficient of variation, heritability, and
accuracy of selection.

Usage

anova_ind(.data, env, gen, rep, resp, block = NULL, verbose = TRUE)

anova_ind 13

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments. The anal-
ysis of variance is computed for each level of this factor.

gen The name of the column that contains the levels of the genotypes.
rep The name of the column that contains the levels of the replications/blocks.
resp The response variable(s). To analyze multiple variables in a single procedure a

vector of variables may be used. For example resp = c(var1, var2, var3).
block Defaults to NULL. In this case, a randomized complete block design is consid-

ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

A list where each element is the result for one variable containing (1) individual: A tidy tbl_df
with the results of the individual analysis of variance with the following column names, and (2)
MSRatio: The ratio between the higher and lower residual mean square. The following columns
are returned, depending on the experimental design

• For analysis in alpha-lattice designs:
– MEAN: The grand mean.
– DFG, DFCR, and DFIB_R, and DFE: The degree of freedom for genotype, complete

replicates, incomplete blocks within replicates, and error, respectively.
– MSG, MSCR, MSIB_R: The mean squares for genotype, replicates, incomplete blocks

within replicates, and error, respectively.
– FCG, FCR, FCIB_R: The F-calculated for genotype, replicates and incomplete blocks

within replicates, respectively.
– PFG, PFCR, PFIB_R: The P-values for genotype, replicates and incomplete blocks within

replicates, respectively.
– CV: coefficient of variation.
– h2: broad-sense heritability.
– AS: accuracy of selection (square root of h2)

• For analysis in randomized complete block design:
– MEAN: The grand mean.
– DFG, DFB, and DFE: The degree of freedom for genotype blocks, and error, respectively.
– MSG, MSB, and MSE: The mean squares for genotype blocks, and error, respectively.
– FCG and FCB: The F-calculated for genotype and blocks, respectively.
– PFG and PFB: The P-values for genotype and blocks, respectively.
– CV: coefficient of variation.
– h2: broad-sense heritability.
– h2MG: broad-sense heritability at a plot level.
– AS: accuracy of selection (square root of h2)

14 anova_joint

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

Examples

library(metan)
ANOVA for all variables in data
ind_an <- anova_ind(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

mean for each environment
get_model_data(ind_an)

P-value for genotype effect
get_model_data(ind_an, "PFG")

anova_joint Joint analysis of variance

Description

[Stable]

Performs a joint analysis of variance to check for the presence of genotype-vs-environment interac-
tions using both randomized complete block and alpha-lattice designs.

Usage

anova_joint(.data, env, gen, rep, resp, block = NULL, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments. The anal-
ysis of variance is computed for each level of this factor.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

anova_joint 15

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

A list where each element is the result for one variable containing the following objects:

• anova: The two-way ANOVA table

• model: The model of class lm.

• augment: Information about each observation in the dataset. This includes predicted values
in the fitted column, residuals in the resid column, standardized residuals in the stdres
column, the diagonal of the ’hat’ matrix in the hat, and standard errors for the fitted values in
the se.fit column.

• details: A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand
mean; Min, the minimum observed (returning the genotype and replication/block); Max the
maximum observed, MinGEN the loser winner genotype, MaxGEN, the winner genotype.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

get_model_data() anova_ind()

Examples

library(metan)
traditional usage approach
j_an <- anova_joint(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

Predicted values
get_model_data(j_an)

Details
get_model_data(j_an, "details")

16 arrange_ggplot

arrange_ggplot Arrange separate ggplots into the same graphic

Description

[Experimental]
This is a wraper function around patchwork::wrap_plots() and patchwork::plot_annotation()
to arrange ggplot2 objects.

Usage

arrange_ggplot(
...,
nrow = NULL,
ncol = NULL,
widths = NULL,
heights = NULL,
guides = NULL,
design = NULL,
legend.position = "bottom",
title = NULL,
subtitle = NULL,
caption = NULL,
tag_levels = NULL,
tag_prefix = NULL,
tag_suffix = NULL,
tag_sep = NULL,
theme = NULL

)

Arguments

... multiple ggplots or a list containing ggplot objects.

nrow, ncol The number of rows and columns, respectively.

widths, heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid.

guides A string specifying how guides should be treated in the layout. Defaults to
'auto'. Other possible values are 'keep' and 'collect'. In this case, will
collect guides below to the given nesting level, removing duplicates.

design Specification of the location of areas in the layout.
legend.position

The position of the legends in the plot if guides = "collect" Default to 'bottom'.

as.lpcor 17

title, subtitle, caption
Text strings to use for the various plot annotations.

tag_levels A character vector defining the enumeration format to use at each level. Possible
values are 'a' for lowercase letters, 'A' for uppercase letters, '1' for numbers,
'i' for lowercase Roman numerals, and 'I' for uppercase Roman numerals. It
can also be a list containing character vectors defining arbitrary tag sequences.
If any element in the list is a scalar and one of 'a', 'A', '1', 'i', or 'I', this
level will be expanded to the expected sequence.

tag_prefix, tag_suffix
Strings that should appear before or after the tag.

tag_sep A separator between different tag levels.
theme A ggplot theme specification to use for the plot. Only elements related to the

titles as well as plot margin and background is used.

Value

A patchwork object

Examples

library(ggplot2)
library(metan)
p1 <- ggplot(mtcars, aes(wt, mpg)) +

geom_point()

p2 <- ggplot(mpg, aes(class, hwy)) +
geom_boxplot()

Default plot
arrange_ggplot(p1, p2)

Insert plot annotation, titles and subtitles
arrange_ggplot(p1, p2,

ncol = 1,
tag_levels = "1",
tag_prefix = "P.",
title = "My grouped ggplot",
subtitle = "Made with arrange_ggplot()",
caption = "P1 = scatter plot - P2 = boxplot")

as.lpcor Coerce to an object of class lpcor

Description

[Stable]
Functions to check if an object is of class lpcor, or coerce it if possible.

18 barplots

Usage

as.lpcor(...)

Arguments

... A comma-separated list of matrices to be coerced to a list.

Value

An object of class lpcor.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
library(dplyr)
mt_num = mtcars %>% select_if(., is.numeric)
lpdata = as.lpcor(cor(mt_num[1:5]),

cor(mt_num[1:5]),
cor(mt_num[2:6]),
cor(mt_num[4:8]))

is.lpcor(lpdata)

barplots Fast way to create bar plots

Description

[Stable]

• plot_bars() Creates a bar plot based on one categorical variable and one numeric variable.
It can be used to show the results of a one-way trial with qualitative treatments.

• plot_factbars() Creates a bar plot based on two categorical variables and one numeric
variable. It can be used to show the results of a two-way trial with qualitative-qualitative
treatment structure.

Usage

plot_bars(
.data,
x,
y,
order = NULL,

barplots 19

y.lim = NULL,
y.breaks = waiver(),
y.expand = 0.05,
y.contract = 0,
xlab = NULL,
ylab = NULL,
n.dodge = 1,
check.overlap = FALSE,
color.bar = "black",
fill.bar = "gray",
lab.bar = NULL,
lab.bar.hjust = 0.5,
lab.bar.vjust = -0.5,
lab.bar.angle = 0,
size.text.bar = 5,
values = FALSE,
values.hjust = 0.5,
values.vjust = 1.5,
values.angle = 0,
values.digits = 2,
values.size = 4,
lab.x.hjust = 0.5,
lab.x.vjust = 1,
lab.x.angle = 0,
errorbar = TRUE,
stat.erbar = "se",
width.erbar = NULL,
level = 0.95,
invert = FALSE,
width.bar = 0.9,
size.line = 0.5,
size.text = 12,
fontfam = "sans",
na.rm = TRUE,
verbose = FALSE,
plot_theme = theme_metan()

)

plot_factbars(
.data,
...,
resp,
y.lim = NULL,
y.breaks = waiver(),
y.expand = 0.05,
y.contract = 0,
xlab = NULL,
ylab = NULL,

20 barplots

n.dodge = 1,
check.overlap = FALSE,
lab.bar = NULL,
lab.bar.hjust = 0.5,
lab.bar.vjust = -0.5,
lab.bar.angle = 0,
size.text.bar = 5,
values = FALSE,
values.hjust = 0.5,
values.vjust = 1.5,
values.angle = 0,
values.digits = 2,
values.size = 4,
lab.x.hjust = 0.5,
lab.x.vjust = 1,
lab.x.angle = 0,
errorbar = TRUE,
stat.erbar = "se",
width.erbar = NULL,
level = 0.95,
invert = FALSE,
col = TRUE,
palette = "Spectral",
width.bar = 0.9,
legend.position = "bottom",
size.line = 0.5,
size.text = 12,
fontfam = "sans",
na.rm = TRUE,
verbose = FALSE,
plot_theme = theme_metan()

)

Arguments

.data The data set.

x, y Argument valid for plot_bars() The variables to be mapped to the x and y
axes, respectively.

order Argument valid for plot_bars(). Controls the order of the factor in the x axis.
Defaults to the order of the factors in .data. Use order = "asce" or order
= "desc" to reorder the labels to ascending or descending order, respectively,
based on the values of the variable y.

y.lim The range of y axis. Defaults to NULL (maximum and minimum values of the
data set). New values can be inserted as y.lim = c(y.min, y.max).

y.breaks The breaks to be plotted in the y-axis. Defaults to waiver(). authomatic breaks.
The same arguments than x.breaks can be used.

barplots 21

y.expand, y.contract
A multiplication range expansion/contraction factor. y.expand expands the up-
per limit of the y escale, while y.contract contracts the lower limit of the y
scale. By default y.expand = 0.05 and y.contract = 0 produces a plot with-
out spacing in the lower y limit and an expansion in the upper y limit.

xlab, ylab The labels of the axes x and y, respectively. Defaults to NULL.

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

color.bar, fill.bar
Argument valid for plot_bars(). The color and fill values of the bars.

lab.bar A vector of characters to show in each bar. Defaults to NULL.
lab.bar.hjust, lab.bar.vjust

The horizontal and vertical adjust for the labels in the bar. Defaults to 0.5 and
-0.5, respectively.

lab.bar.angle The angle for the labels in the plot. Defaults to 0. Use in combination with
lab.bar.hjust and lab.bar.vjust to best fit the labels in the plot.

size.text.bar The size of the text in the bar labels.

values Logical argument. Shows the values in the plot bar? Defaults to FALSE

values.hjust, values.vjust
The horizontal and vertical adjust for the values in the bar. Defaults to 0.5 and
1.5, respectively. If values = TRUE the values are shown bellow the error bar.

values.angle The angle for the labels in the plot. Defaults to 0. Use in combination with
values.hjust and values.vjust to best fit the values in the plot bar.

values.digits The significant digits to show if values = TRUE. Defaults to 2.

values.size The size of the text for values shown in the bars. Defaults to 3.
lab.x.hjust, lab.x.vjust

The horizontal and vertical adjust for the labels in the bar. Defaults to 0.5 and 1,
respectively.

lab.x.angle The angle for the labels in x axis. Defaults to 0. Use in combination with
lab.x.hjust and lab.x.vjust to best fit the labels in the axis.

errorbar Logical argument, set to TRUE. In this case, an error bar is shown.

stat.erbar The statistic to be shown in the errorbar. Must be one of the stat.erbar
= "se" (standard error, default), stat.erbar = "sd" (standard deviation), or
stat.erbar = "ci" (confidence interval), based on the confidence level in the
argument level.

width.erbar The width of the error bar. Defaults to 25% of width.bar.

level The confidence level

invert Logical argument. If TRUE, rotate the plot in plot_bars() and invert the order
of the factors in plot_factbars().

width.bar The width of the bars in the graph. Defaults to 0.9. Possible values are in the
range 0-1.

22 barplots

size.line The size of the line in the bars. Default to 0.5.

size.text The size of the text. Default to 12.

fontfam The family of the font text. Defaults to "sans".

na.rm Should ’NA’ values be removed to compute the statistics? Defaults to true

verbose Logical argument. If TRUE a tibble containing the mean, N, standard deviation,
standard error of mean and confidence interval is returned.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

... Argument valid for plot_factbars(). A comma-separated list of unquoted
variable names. Sets the two variables to be mapped to the x axis.

resp Argument valid for plot_factbars(). The response variable to be mapped to
the y axis.

col Logical argument valid for plot_factbars(). If FALSE, a gray scale is used.

palette Argument valid for plot_factbars() The color palette to be used. For more
details, see ?scale_colour_brewer

legend.position

The position of the legend in the plot.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

plot_lines(), plot_factlines()

Examples

library(metan)
two categorical variables
plot_factbars(data_ge2,

GEN,
ENV,
resp = PH)

one categorical variable
p1 <- plot_bars(data_g, GEN, PH)
p2 <- plot_bars(data_g, GEN, PH,

n.dodge = 2, # two rows for x labels
y.expand = 0.1, # expand y scale
y.contract = -0.75, # contract the lower limit
errorbar = FALSE, # remove errorbar
color.bar = "red", # color of bars
fill.bar = alpha_color("cyan", 75), # create a transparent color

bind_cv 23

lab.bar = letters[1:13]) # add labels
arrange_ggplot(p1, p2)

bind_cv Bind cross-validation objects

Description

[Stable]
Helper function that combines objects of class cv_ammi, cv_ammif or cv_blup. It is useful when
looking for a boxplot containing the RMSPD values of those cross-validation procedures.

Usage

bind_cv(..., bind = "boot", sort = TRUE)

Arguments

... Input objects of class cv_ammi, cv_ammif or cv_blup.

bind What data should be used? To plot the RMSPD, use ’boot’ (default). Use bind
= 'means' to return the RMSPD mean for each model.

sort Used to sort the RMSPD mean in ascending order.

Value

An object of class cv_ammif. The results will depend on the argument bind. If bind = 'boot' then
the RMSPD of all models in ... will be bind to a unique data frame. If bind = 'means' then the
RMSPD mean of all models in ... will be bind to an unique data frame.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Two examples with only 5 resampling procedures
AMMI <- cv_ammi(data_ge,

resp = GY,
gen = GEN,
env = ENV,
rep = REP,
nboot = 5)

BLUP <- cv_blup(data_ge,
resp = GY,
gen = GEN,
env = ENV,

24 blup_indexes

rep = REP,
nboot = 5)

bind_data <- bind_cv(AMMI, BLUP)
plot(bind_data)

print(bind_cv(AMMI, BLUP, bind = 'means'))

blup_indexes Stability indexes based on a mixed-effect model

Description

[Stable]

• hmgv() Computes the harmonic mean of genotypic values (HMGV).

• rpgv() Computes the relative performance of the genotypic values (RPGV).

• hmrpgv() Computes the harmonic mean of the relative performance of genotypic values (HM-
RPGV).

• blup_indexes() Is a wrapper around the above functions that also computes the WAASB
index (Olivoto et al. 2019) if an object computed with waasb() is used as input data.

Usage

hmgv(model)

rpgv(model)

hmrpgv(model)

blup_indexes(model)

Arguments

model An object of class waasb computed with waasb() or gamem_met().

Details

The indexes computed with this function have been used to select genotypes with stability perfor-
mance in a mixed-effect model framework. Some examples are in Alves et al (2018), Azevedo
Peixoto et al. (2018), Dias et al. (2018) and Colombari Filho et al. (2013).

The HMGV index is computed as

HMGVi =
E

E∑
j=1

1
Gvij

blup_indexes 25

where E is the number of environments included in the analysis, Gvij is the genotypic value
(BLUP) for the ith genotype in the jth environment.

The RPGV index is computed as

RPGVi =
1

E

E∑
j=1

Gvij/ µj

The HMRPGV index is computed as

HMRPGVi =
E

E∑
j=1

1
Gvij/µj

Value

A tibble containing the indexes.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Alves, R.S., L. de Azevedo Peixoto, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, M.D.V. de Re-
sende, B.G. Laviola, and L.L. Bhering. 2018. Selection of Jatropha curcas families based on
temporal stability and adaptability of genetic values. Ind. Crops Prod. 119:290-293. doi:10.1016/
J.INDCROP.2018.04.029

Azevedo Peixoto, L. de, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, B.G. Laviola, and L.L. Bhering.
2018. Jatropha half-sib family selection with high adaptability and genotypic stability. PLoS One
13:e0199880. doi:10.1371/journal.pone.0199880

Colombari Filho, J.M., M.D.V. de Resende, O.P. de Morais, A.P. de Castro, E.P. Guimaraes, J.A.
Pereira, M.M. Utumi, and F. Breseghello. 2013. Upland rice breeding in Brazil: a simultaneous
genotypic evaluation of stability, adaptability and grain yield. Euphytica 192:117-129. doi:10.1007/
s1068101309222

Dias, P.C., A. Xavier, M.D.V. de Resende, M.H.P. Barbosa, F.A. Biernaski, R.A. Estopa. 2018. Ge-
netic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environ-
ment interaction. Crop Breed. Appl. Biotechnol. 18:55-64. doi:10.1590/198470332018v18n1a8

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento ge-
netico. Embrapa Florestas, Colombo

https://doi.org/10.1016/J.INDCROP.2018.04.029
https://doi.org/10.1016/J.INDCROP.2018.04.029
https://doi.org/10.1371/journal.pone.0199880
https://doi.org/10.1007/s10681-013-0922-2
https://doi.org/10.1007/s10681-013-0922-2
https://doi.org/10.1590/1984-70332018v18n1a8
https://doi.org/10.2134/agronj2019.03.0220

26 can_corr

Examples

library(metan)
res_ind <- waasb(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM),
verbose = FALSE)

model_indexes <- blup_indexes(res_ind)
gmd(model_indexes)

can_corr Canonical correlation analysis

Description

[Stable]

Performs canonical correlation analysis with collinearity diagnostic, estimation of canonical loads,
canonical scores, and hypothesis testing for correlation pairs.

Usage

can_corr(
.data,
FG,
SG,
by = NULL,
use = "cor",
test = "Bartlett",
prob = 0.05,
center = TRUE,
stdscores = FALSE,
verbose = TRUE,
collinearity = TRUE

)

Arguments

.data The data to be analyzed. It can be a data frame (possible with grouped data
passed from dplyr::group_by().

FG, SG A comma-separated list of unquoted variable names that will compose the first
(smallest) and second (highest) group of the correlation analysis, respectively.
Select helpers are also allowed.

can_corr 27

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

use The matrix to be used. Must be one of ’cor’ for analysis using the correlation
matrix (default) or ’cov’ for analysis using the covariance matrix.

test The test of significance of the relationship between the FG and SG. Must be one
of the ’Bartlett’ (default) or ’Rao’.

prob The probability of error assumed. Set to 0.05.

center Should the data be centered to compute the scores?

stdscores Rescale scores to produce scores of unit variance?

verbose Logical argument. If TRUE (default) then the results are shown in the console.

collinearity Logical argument. If TRUE (default) then a collinearity diagnostic is performed
for each group of variables according to Olivoto et al.(2017).

Value

If .data is a grouped data passed from dplyr::group_by() then the results will be returned into a
list-column of data frames.

• Matrix The correlation (or covariance) matrix of the variables

• MFG, MSG The correlation (or covariance) matrix for the variables of the first group or
second group, respectively.

• MFG_SG The correlation (or covariance) matrix for the variables of the first group with the
second group.

• Coef_FG, Coef_SG Matrix of the canonical coefficients of the first group or second group,
respectively.

• Loads_FG, Loads_SG Matrix of the canonical loadings of the first group or second group,
respectively.

• Score_FG, Score_SG Canonical scores for the variables in FG and SG, respectively.

• Crossload_FG, Crossload_FG Canonical cross-loadings for FG variables on the SG scores,
and cross-loadings for SG variables on the FG scores, respectively.

• SigTest A dataframe with the correlation of the canonical pairs and hypothesis testing results.

• collinearity A list with the collinearity diagnostic for each group of variables.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D.
Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J.
109:131-142. doi:10.2134/agronj2016.04.0196

https://doi.org/10.2134/agronj2016.04.0196

28 clustering

Examples

library(metan)

cc1 <- can_corr(data_ge2,
FG = c(PH, EH, EP),
SG = c(EL, ED, CL, CD, CW, KW, NR))

Canonical correlations for each environment
cc3 <- data_ge2 %>%

can_corr(FG = c(PH, EH, EP),
SG = c(EL, ED, CL, CD, CW, KW, NR),
by = ENV,
verbose = FALSE)

clustering Clustering analysis

Description

[Stable]
Performs clustering analysis with selection of variables.

Usage

clustering(
.data,
...,
by = NULL,
scale = FALSE,
selvar = FALSE,
verbose = TRUE,
distmethod = "euclidean",
clustmethod = "average",
nclust = NA

)

Arguments

.data The data to be analyzed. It can be a data frame, possible with grouped data
passed from dplyr::group_by().

... The variables in .data to compute the distances. Set to NULL, i.e., all the nu-
meric variables in .data are used.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

clustering 29

scale Should the data be scaled before computing the distances? Set to FALSE. If
TRUE, then, each observation will be divided by the standard deviation of the
variable Zij = Xij/sdj

selvar Logical argument, set to FALSE. If TRUE, then an algorithm for selecting variables
is implemented. See the section Details for additional information.

verbose Logical argument. If TRUE (default) then the results for variable selection are
shown in the console.

distmethod The distance measure to be used. This must be one of 'euclidean', 'maximum',
'manhattan', 'canberra', 'binary', 'minkowski', 'pearson', 'spearman',
or 'kendall'. The last three are correlation-based distance.

clustmethod The agglomeration method to be used. This should be one of 'ward.D', 'ward.D2',
'single', 'complete', 'average' (= UPGMA), 'mcquitty' (= WPGMA),
'median' (= WPGMC) or 'centroid' (= UPGMC).

nclust The number of clusters to be formed. Set to NA

Details

When selvar = TRUE a variable selection algorithm is executed. The objective is to select a group
of variables that most contribute to explain the variability of the original data. The selection of the
variables is based on eigenvalue/eigenvectors solution based on the following steps.

1. compute the distance matrix and the cophenetic correlation with the original variables (all
numeric variables in dataset);

2. compute the eigenvalues and eigenvectors of the correlation matrix between the variables;

3. Delete the variable with the largest weight (highest eigenvector in the lowest eigenvalue);

4. Compute the distance matrix and cophenetic correlation with the remaining variables;

5. Compute the Mantel’s correlation between the obtained distances matrix and the original dis-
tance matrix;

6. Iterate steps 2 to 5 p - 2 times, where p is the number of original variables.

At the end of the p - 2 iterations, a summary of the models is returned. The distance is calculated
with the variables that generated the model with the largest cophenetic correlation. I suggest a
careful evaluation aiming at choosing a parsimonious model, i.e., the one with the fewer number
of variables, that presents acceptable cophenetic correlation and high similarity with the original
distances.

Value

• data The data that was used to compute the distances.

• cutpoint The cutpoint of the dendrogram according to Mojena (1977).

• distance The matrix with the distances.

• de The distances in an object of class dist.

• hc The hierarchical clustering.

• Sqt The total sum of squares.

• tab A table with the clusters and similarity.

30 clustering

• clusters The sum of square and the mean of the clusters for each variable.

• cofgrap If selectvar = TRUE, then, cofpgrap is a ggplot2-based graphic showing the cophe-
netic correlation for each model (with different number of variables). Else, will be a NULL
object.

• statistics If selectvar = TRUE, then, statistics shows the summary of the models fitted
with different number of variables, including cophenetic correlation, Mantel’s correlation with
the original distances (all variables) and the p-value associated with the Mantel’s test. Else,
will be a NULL object.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Mojena, R. 2015. Hierarchical grouping methods and stopping rules: an evaluation. Comput. J.
20:359-363. doi:10.1093/comjnl/20.4.359

Examples

library(metan)

All rows and all numeric variables from data
d1 <- clustering(data_ge2)

Based on the mean for each genotype
mean_gen <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN")

d2 <- clustering(mean_gen)

Select variables for compute the distances
d3 <- clustering(mean_gen, selvar = TRUE)

Compute the distances with standardized data
Define 4 clusters
d4 <- clustering(data_ge,

by = ENV,
scale = TRUE,
nclust = 4)

https://doi.org/10.1093/comjnl/20.4.359

coincidence_index 31

coincidence_index Computes the coincidence index of genotype selection

Description

[Stable]
Computes the coincidence index (Hamblin and Zimmermann, 1986) as follows:

CI =
A− C

M − C
× 100

where A is the number of selected genotypes common to different methods; C is the number of
expected genotypes selected by chance; and M is the number of genotypes selected according to the
selection intensity.

Usage

coincidence_index(..., total, sel1 = NULL, sel2 = NULL)

Arguments

... A comma-separated list of objects of class mgidi, mtsi fai_blup, or sh. When
a model is informed, then the selected genotypes are extracted automatically.

total The total number of genotypes in the study.
sel1, sel2 The selected genotypes by the method 1 and 2, respectively. Defaults to NULL.

Value

A list with the following elements:

• coincidence: A data frame with the coincidence index, number of common genotypes and the
list of common genotypes for each model combination.

• coincidence_mat: A matrix-like containing the coincidence index.
• genotypes: The number of common genotypes for all models, i.e., the insersection of the

selected genotypes of all models

References

Hamblin, J., and M.J. de O. Zimmermann. 1986. Breeding Common Bean for Yield in Mixtures.
p. 245-272. In Plant Breeding Reviews. John Wiley & Sons, Inc., Hoboken, NJ, USA.doi:10.1002/
9781118061015.ch8

Examples

sel1 <- paste("G", 1:30, sep = "")
sel2 <- paste("G", 16:45, sep = "")
coincidence_index(sel1 = sel1, sel2 = sel2, total = 150)

https://doi.org/10.1002/9781118061015.ch8
https://doi.org/10.1002/9781118061015.ch8

32 colindiag

colindiag Collinearity Diagnostics

Description

[Stable]
Perform a (multi)collinearity diagnostic of a correlation matrix of predictor variables using several
indicators, as shown by Olivoto et al. (2017).

Usage

colindiag(.data, ..., by = NULL, n = NULL)

Arguments

.data The data to be analyzed. It must be a symmetric correlation matrix, or a data
frame, possible with grouped data passed from dplyr::group_by().

... Variables to use in the correlation. If ... is null then all the numeric variables
from .data are used. It must be a single variable name or a comma-separated
list of unquoted variables names.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

n If a correlation matrix is provided, then n is the number of objects used to com-
pute the correlation coefficients.

Value

If .data is a grouped data passed from dplyr::group_by() then the results will be returned into a
list-column of data frames.

• cormat A symmetric Pearson’s coefficient correlation matrix between the variables

• corlist A hypothesis testing for each of the correlation coefficients

• evalevet The eigenvalues with associated eigenvectors of the correlation matrix

• indicators A data.frame with the following indicators

• VIF The Variance Inflation Factors, being the diagonal elements of the inverse of the correla-
tion matrix.

• cn The Condition Number of the correlation matrix, given by the ratio between the largest and
smallest eigenvalue.

• det The determinant of the correlation matrix.

• ncorhigh Number of correlation greather than |0.8|.

• largest_corr The largest correlation (in absolute value) observed.

• smallest_corr The smallest correlation (in absolute value) observed.

• weight_var The variables with largest eigenvector (largest weight) in the eigenvalue of small-
est value, sorted in decreasing order.

comb_vars 33

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D.
Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J.
109:131-142. doi:10.2134/agronj2016.04.0196

Examples

Using the correlation matrix
library(metan)

cor_iris <- cor(iris[,1:4])
n <- nrow(iris)

col_diag <- colindiag(cor_iris, n = n)

Using a data frame
col_diag_gen <- data_ge2 %>%

group_by(GEN) %>%
colindiag()

Diagnostic by levels of a factor
For variables with "N" in variable name
col_diag_gen <- data_ge2 %>%

group_by(GEN) %>%
colindiag(contains("N"))

comb_vars Pairwise combinations of variables

Description

[Stable]

Pairwise combinations of variables that will be the result of a function applied to each combination.

Usage

comb_vars(.data, order = "first", FUN = "+", verbose = TRUE)

https://doi.org/10.2134/agronj2016.04.0196

34 correlated_vars

Arguments

.data A matrix of data with, say, p columns.

order The order on how the results will appear in the output. Default is order =
'first'. In this case, assuming that .data has four columns, namely, V1, V2, V3, V4,
the order of columns in the output will be V1.V2, V1.V3, V1.V4, V2.V3, V2.V4, V3.V4.
If order = 'second', the result will be then V1.V2, V1.V3, V2.V3, V1.V4, V2.V4, V3.V4.

FUN The function that will be applied to each combination. The default is +, i.e., V1
+ V2.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

A data frame containing all possible combination of variables. Each combination is the result of the
function in FUN applied to the two variables.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
data <- data.frame(A = rnorm(n = 5, mean = 10, sd = 3),

B = rnorm(n = 5, mean = 120, sd = 30),
C = rnorm(n = 5, mean = 40, sd = 10),
D = rnorm(n = 5, mean = 1100, sd = 200),
E = rnorm(n = 5, mean = 2, sd = 1))

comb1 <- comb_vars(data)
comb2 <- comb_vars(data, FUN = '*', order = 'second')

correlated_vars Generate correlated variables

Description

[Experimental]
Generate correlated variables using a vector of know values and desired maximum and minimum
correlations

Usage

correlated_vars(
y,
min_cor = -1,
max_cor = 1,
nvars,

corr_ci 35

constant = NULL,
operation = "*",
x = NULL

)

Arguments

y A vector to generate variables correlated with.

min_cor The minimum desired correlation.

max_cor The maximum desired correlation.

nvars The number of variables.

constant A constant. Use operation to define which operation is used.

operation The operation to be applied to the constant value.

x An optional vector of the same length of y. If not informed (default) then a
normally distributed variable (mean = 0, sd = 1) will be used.

Value

A data frame with the y variable and the correlated variables.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
y <- rnorm(n = 10)
cor_vars <- correlated_vars(y, nvar = 6)
plot(cor_vars)

corr_ci Confidence interval for correlation coefficient

Description

[Stable]
Computes the half-width confidence interval for correlation coefficient using the nonparametric
method proposed by Olivoto et al. (2018).

The half-width confidence interval is computed according to the following equation:

CIw = 0.45304r × 2.25152× n−0.50089

where n is the sample size and r is the correlation coefficient.

36 corr_ci

Usage

corr_ci(
.data = NA,
...,
r = NULL,
n = NULL,
by = NULL,
sel.var = NULL,
verbose = TRUE

)

Arguments

.data The data to be analyzed. It can be a data frame (possible with grouped data
passed from dplyr::group_by()) or a symmetric correlation matrix.

... Variables to compute the confidence interval. If not informed, all the numeric
variables from .data are used.

r If data is not available, provide the value for correlation coefficient.

n The sample size if data is a correlation matrix or if r is informed.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

sel.var A variable to shows the correlation with. This will omit all the pairwise correla-
tions that doesn’t contain sel.var.

verbose If verbose = TRUE then some results are shown in the console.

Value

A tibble containing the values of the correlation, confidence interval, upper and lower limits for all
combination of variables.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lucio, V.Q. Souza, M. Nardino, M.I. Diel, B.G. Sari, D.. K. Krysczun, D.
Meira, and C. Meier. 2018. Confidence interval width for Pearson’s correlation coefficient: a
Gaussian-independent estimator based on sample size and strength of association. Agron. J. 110:1-
8. doi:10.2134/agronj2016.04.0196

Examples

library(metan)

CI1 <- corr_ci(data_ge2)

By each level of the factor 'ENV'

https://doi.org/10.2134/agronj2016.04.0196

corr_coef 37

CI2 <- corr_ci(data_ge2, CD, TKW, NKE,
by = ENV,
verbose = FALSE)

CI2

corr_coef Linear and partial correlation coefficients

Description

Computes Pearson’s linear correlation or partial correlation with p-values

Usage

corr_coef(
data,
...,
type = c("linear", "partial"),
method = c("pearson", "kendall", "spearman"),
use = c("pairwise.complete.obs", "everything", "complete.obs"),
by = NULL,
verbose = TRUE

)

Arguments

data The data set. It understand grouped data passed from dplyr::group_by().

... Variables to use in the correlation. If no variable is informed all the numeric
variables from data are used.

type The type of correlation to be computed. Defaults to "linear". Use type =
"partial" to compute partial correlation.

method a character string indicating which partial correlation coefficient is to be com-
puted. One of "pearson" (default), "kendall", or "spearman"

use an optional character string giving a method for computing covariances in the
presence of missing values. See stats::cor for more details

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, to compute correlation matrices by levels of a
factor.

verbose Logical argument. If verbose = FALSE the code is run silently.

38 corr_coef

Details

The partial correlation coefficient is a technique based on matrix operations that allow us to identify
the association between two variables by removing the effects of the other set of variables present
(Anderson 2003) A generalized way to estimate the partial correlation coefficient between two
variables (i and j) is through the simple correlation matrix that involves these two variables and m
other variables from which we want to remove the effects. The estimate of the partial correlation
coefficient between i and j excluding the effect of m other variables is given by:

rij.m =
−aij√
aiiajj

Where rij.m is the partial correlation coefficient between variables i and j, without the effect of the
other m variables; aij is the ij-order element of the inverse of the linear correlation matrix; aii, and
ajj are the elements of orders ii and jj, respectively, of the inverse of the simple correlation matrix.

Value

A list with the correlation coefficients and p-values

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Anderson, T. W. 2003. An introduction to multivariate statistical analysis. 3rd ed. Wiley-Interscience.

Examples

library(metan)

All numeric variables
all <- corr_coef(data_ge2)

Select variable
sel <-

corr_coef(data_ge2,
EP, EL, CD, CL)

sel$cor

Select variables, partial correlation
sel <-

corr_coef(data_ge2,
EP, EL, CD, CL,
type = "partial")

sel$cor

corr_focus 39

corr_focus Focus on section of a correlation matrix

Description

Select a set of variables from a correlation matrix to keep as the columns, and exclude these or all
other variables from the rows.

Usage

corr_focus(model, ...)

Arguments

model A model computed with corr_coef() or a symmetric matrix, often produced
with stats::cor().

... One or more unquoted variable name separated by commas. Variable names can
be used as if they were positions in the data frame, so expressions like x:y can
be used to select a range of variables.

Value

A tibble

Examples

corr_coef(data_ge2) |> corr_focus(PH)

corr_plot Visualization of a correlation matrix

Description

[Stable]
Graphical and numerical visualization of a correlation matrix

Usage

corr_plot(
.data,
...,
col.by = NULL,
upper = "corr",
lower = "scatter",
decimal.mark = ".",

40 corr_plot

axis.labels = FALSE,
show.labels.in = "show",
size.axis.label = 12,
size.varnames = 12,
col.varnames = "black",
diag = TRUE,
diag.type = "histogram",
bins = 20,
col.diag = "gray",
alpha.diag = 1,
col.up.panel = "gray",
col.lw.panel = "gray",
col.dia.panel = "gray",
prob = 0.05,
col.sign = "green",
alpha.sign = 0.15,
lab.position = "tr",
progress = NULL,
smooth = FALSE,
col.smooth = "red",
confint = TRUE,
size.point = 1,
shape.point = 19,
alpha.point = 0.7,
fill.point = NULL,
col.point = "black",
size.line = 0.5,
minsize = 2,
maxsize = 3,
pan.spacing = 0.15,
digits = 2,
export = FALSE,
file.type = "pdf",
file.name = NULL,
width = 8,
height = 7,
resolution = 300

)

Arguments

.data The data. Should, preferentially, contain numeric variables only. If .data has
factor-columns, these columns will be deleted with a warning message.

... Variables to use in the correlation. If no variable is informed all the numeric
variables from .data are used.

col.by A categorical variable to map the color of the points by. Defaults to NULL.

upper The visualization method for the upper triangular correlation matrix. Must be
one of 'corr' (numeric values), 'scatter' (the scatterplot for each pairwise

corr_plot 41

combination), or NULL to set a blank diagonal.

lower The visualization method for the lower triangular correlation matrix. Must be
one of 'corr' (numeric values), 'scatter' (the scatterplot for each pairwise
combination), or NULL to set a blank diagonal.

decimal.mark The decimal mark. Defaults to ".".

axis.labels Should the axis labels be shown in the plot? Set to FALSE.

show.labels.in Where to show the axis labels. Defaults to "show" bottom and left. Use "diag"
to show the labels on the diagonal. In this case, the diagonal layer (boxplot,
density or histogram) will be overwritten.

size.axis.label

The size of the text for axis labels if axis.labels = TRUE. Defaults to 12.

size.varnames The size of the text for variable names. Defaults to 12.

col.varnames The color of the text for variable names. Defaults to "black".

diag Should the diagonal be shown?

diag.type The type of plot to show in the diagonal if diag TRUE. It must be one of the
’histogram’ (to show an histogram), ’density’ to show the Kernel density, or
’boxplot’ (to show a boxplot).

bins The number of bins, Defaults to 20.

col.diag If diag = TRUE then diagcol is the color for the distribution. Set to gray.

alpha.diag Alpha-transparency scale (0-1) to make the diagonal plot transparent. 0 = fully
transparent; 1 = full color. Set to 0.15

col.up.panel, col.lw.panel, col.dia.panel
The color for the upper, lower, and diagonal panels, respectively. Set to ’gray’.

prob The probability of error. Significant correlations will be highlighted with ’’,
’’, and ’’ (0.05, 0.01, and 0.001, respectively). Scatterplots with significant
correlations may be color-highlighted.

col.sign The color that will highlight the significant correlations. Set to ’green’.

alpha.sign Alpha-transparency scale (0-1) to make the plot area transparent. 0 = fully trans-
parent; 1 = full color. Set to 0.15

lab.position The position that the labels will appear. Set to 'tr', i.e., the legends will appear
in the top and right of the plot. Other allowed options are 'tl' (top and left),
'br' (bottom and right), 'bl' (bottom and left).

progress NULL (default) for a progress bar in interactive sessions with more than 15 plots,
TRUE for a progress bar, FALSE for no progress bar.

smooth Should a linear smooth line be shown in the scatterplots? Set to FALSE.

col.smooth The color for the smooth line.

confint Should a confidence band be shown with the smooth line? Set to TRUE.

size.point The size of the points in the plot. Set to 0.5.

shape.point The shape of the point, set to 1.

alpha.point Alpha-transparency scale (0-1) to make the points transparent. 0 = fully trans-
parent; 1 = full color. Set to 0.7

42 corr_plot

fill.point The color to fill the points. Valid argument if points are between 21 and 25.

col.point The color for the edge of the point, set to black.

size.line The size of the line (smooth and diagonal).

minsize The size of the letter that will represent the smallest correlation coefficient.

maxsize The size of the letter that will represent the largest correlation coefficient.

pan.spacing The space between the panels. Set to 0.15.

digits The number of digits to show in the plot.

export Logical argument. If TRUE, then the plot is exported to the current directory.

file.type The format of the file if export = TRUE. Set to 'pdf'. Other possible values are
*.tiff using file.type = 'tiff'.

file.name The name of the plot when exported. Set to NULL, i.e., automatically.

width The width of the plot, set to 8.

height The height of the plot, set to 7.

resolution The resolution of the plot if file.type = 'tiff' is used. Set to 300 (300 dpi).

Value

An object of class gg, ggmatrix.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
dataset <- data_ge2 %>% select_cols(1:7)

Default plot setting
corr_plot(dataset)

Chosing variables to be correlated
corr_plot(dataset, PH, EH, EL)

Axis labels, similar to the function pairs()
Gray scale
corr_plot(dataset, PH, EH, EL,

shape.point = 19,
size.point = 2,
alpha.point = 0.5,
alpha.diag = 0,
pan.spacing = 0,
col.sign = 'gray',
alpha.sign = 0.3,
axis.labels = TRUE)

corr_ss 43

corr_plot(dataset, PH, EH, EL,
prob = 0.01,
shape.point = 21,
col.point = 'black',
fill.point = 'orange',
size.point = 2,
alpha.point = 0.6,
maxsize = 4,
minsize = 2,
smooth = TRUE,
size.line = 1,
col.smooth = 'black',
col.sign = 'cyan',
col.up.panel = 'black',
col.lw.panel = 'black',
col.dia.panel = 'black',
pan.spacing = 0,
lab.position = 'tl')

corr_ss Sample size planning for a desired Pearson’s correlation confidence
interval

Description

[Stable]
Find the required (sufficient) sample size for computing a Pearson correlation coefficient with a
desired confidence interval (Olivoto et al., 2018) as follows

n =

[
CIw

0.45304r × 2.25152

]−0.50089

where CIw is desired confidence interval and r is the correlation coefficient.

Usage

corr_ss(r, CI, verbose = TRUE)

Arguments

r The magnitude of the correlation coefficient.

CI The half-width for confidence interval at p < 0.05.

verbose Logical argument. If verbose = FALSE the code is run silently.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

44 corr_stab_ind

References

Olivoto, T., A.D.C. Lucio, V.Q. Souza, M. Nardino, M.I. Diel, B.G. Sari, D.. K. Krysczun, D.
Meira, and C. Meier. 2018. Confidence interval width for Pearson’s correlation coefficient: a
Gaussian-independent estimator based on sample size and strength of association. Agron. J. 110:1-
8. doi:10.2134/agronj2016.04.0196

Examples

corr_ss(r = 0.60, CI = 0.1)

corr_stab_ind Correlation between stability indexes

Description

[Stable]

Computes the Spearman’s rank correlation between the parametric and nonparametric stability in-
dexes computed with the function ge_stats().

Usage

corr_stab_ind(x, stats = "all", plot = TRUE, ...)

Arguments

x An object of class ge_stats.

stats The statistics to compute the correlation. See the section Details for more infor-
mation.

plot Plot the heat map with the correlations? Defaults to TRUE.

... Other arguments to be passed to the function plot.corr_coef().

Details

The argument stats is used to chose the statistics to show the ranks. Allowed values are "all"
(All statistics, default), "par" (Parametric statistics), "nonpar" (Non-parametric statistics), "ammi"
(AMMI-based stability statistics), or the following values that can be combined into comma-separated
character vector. "Y" (Response variable), "Var" (Genotype’s variance), "Shukla" (Shukla’s vari-
ance), "Wi_g", "Wi_f", "Wi_u" (Annichiarrico’s genotypic confidence index for all, favorable
and unfavorable environments, respectively), "Ecoval" (Wricke’s ecovalence), "Sij" (Deviations
from the joint-regression analysis), "R2" (R-squared from the joint-regression analysis), "ASTAB"
(AMMI Based Stability Parameter), "ASI" (AMMI Stability Index), "ASV" (AMMI-stability value),

https://doi.org/10.2134/agronj2016.04.0196

covcor_design 45

"AVAMGE" (Sum Across Environments of Absolute Value of GEI Modelled by AMMI), "Da" (An-
nicchiarico’s D Parameter values), "Dz" (Zhang’s D Parameter), "EV" (Sums of the Averages of
the Squared Eigenvector Values), "FA" (Stability Measure Based on Fitted AMMI Model), "MASV"
(Modified AMMI Stability Value), "SIPC" (Sums of the Absolute Value of the IPC Scores), "Za"
(Absolute Value of the Relative Contribution of IPCs to the Interaction), "WAAS" (Weighted average
of absolute scores), "HMGV" (Harmonic mean of the genotypic value), "RPGV" (Relative performance
of the genotypic values), "HMRPGV" (Harmonic mean of the relative performance of the genotypic
values), "Pi_a", "Pi_f", "Pi_u" (Superiority indexes for all, favorable and unfavorable envi-
ronments, respectively), "Gai" (Geometric adaptability index), "S1" (mean of the absolute rank
differences of a genotype over the n environments), "S2" (variance among the ranks over the k en-
vironments), "S3" (sum of the absolute deviations), "S6" (relative sum of squares of rank for each
genotype), "N1", "N2", "N3", "N4" (Thennarasu"s statistics)).

Value

A list with the data (ranks) correlation, p-values and a heat map showing the correlation coefficients.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
a <- corr_stab_ind(model)

covcor_design Variance-covariance matrices for designed experiments

Description

[Stable]
Compute variance-covariance and correlation matrices using data from a designed (RCBD or CRD)
experiment.

Usage

covcor_design(.data, gen, rep, resp, design = "RCBD", by = NULL, type = NULL)

Arguments

.data The data to be analyzed. It can be a data frame, possible with grouped data
passed from dplyr::group_by().

gen The name of the column that contains the levels of the genotypes.

46 covcor_design

rep The name of the column that contains the levels of the replications/blocks.

resp The response variables. For example resp = c(var1, var2, var3).

design The experimental design. Must be RCBD or CRD.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

type What the matrices should return? Set to NULL, i.e., a list of matrices is returned.
The argument type allow the following values 'pcor', 'gcor', 'rcor',
(which will return the phenotypic, genotypic and residual correlation matrices,
respectively) or 'pcov', 'gcov', 'rcov' (which will return the phenotypic,
genotypic and residual variance-covariance matrices, respectively). Alterna-
tively, it is possible to get a matrix with the means of each genotype in each
trait, by using type = 'means'.

Value

An object of class covcor_design containing the following items:

• geno_cov The genotypic covariance.

• phen_cov The phenotypic covariance.

• resi_cov The residual covariance.

• geno_cor The phenotypic correlation.

• phen_cor The phenotypic correlation.

• resi_cor The residual correlation.

If .data is a grouped data passed from dplyr::group_by() then the results will be returned into a
list-column of data frames.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
List of matrices
data <- subset(data_ge2, ENV == 'A1')
matrices <- covcor_design(data,

gen = GEN,
rep = REP,
resp = c(PH, EH, NKE, TKW))

Genetic correlations
gcor <- covcor_design(data,

gen = GEN,
rep = REP,
resp = c(PH, EH, NKE, TKW),
type = 'gcor')

cv_ammi 47

Residual (co)variance matrix for each environment
rcov <- covcor_design(data_ge2,

gen = GEN,
rep = REP,
resp = c(PH, EH, CD, CL),
by = ENV,
type = "rcov")

cv_ammi Cross-validation procedure

Description

[Stable]

Cross-validation for estimation of AMMI models

THe original dataset is split into two datasets: training set and validation set. The ’training’ set
has all combinations (genotype x environment) with N-1 replications. The ’validation’ set has the
remaining replication. The splitting of the dataset into modeling and validation sets depends on
the design informed. For Completely Randomized Block Design (default), and alpha-lattice design
(declaring block arguments), complete replicates are selected within environments. The remained
replicate serves as validation data. If design = 'RCD' is informed, completely randomly samples
are made for each genotype-by-environment combination (Olivoto et al. 2019). The estimated
values considering naxis-Interaction Principal Component Axis are compared with the ’validation’
data. The Root Mean Square Prediction Difference (RMSPD) is computed. At the end of boots, a
list is returned.

IMPORTANT: If the data set is unbalanced (i.e., any genotype missing in any environment) the
function will return an error. An error is also observed if any combination of genotype-environment
has a different number of replications than observed in the trial.

Usage

cv_ammi(
.data,
env,
gen,
rep,
resp,
block = NULL,
naxis = 2,
nboot = 200,
design = "RCBD",
verbose = TRUE

)

48 cv_ammi

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks. AT
LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE
CROSS-VALIDATION.

resp The response variable.

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

naxis The number of axis to be considered for estimation of GE effects.

nboot The number of resamples to be used in the cross-validation. Defaults to 200.

design The experimental design. Defaults to RCBD (Randomized complete Block De-
sign). For Completely Randomized Designs inform design = 'CRD'.

verbose A logical argument to define if a progress bar is shown. Default is TRUE.

Value

An object of class cv_ammi with the following items: * RMSPD: A vector with nboot-estimates of
the Root Mean Squared Prediction Difference between predicted and validating data.

• RMSPDmean: The mean of RMSPDmean estimates.

• Estimated: A data frame that contain the values (predicted, observed, validation) of the last
loop.

• Modeling: The dataset used as modeling data in the last loop

• Testing: The dataset used as testing data in the last loop.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

cv_ammif(), cv_blup()

https://doi.org/10.2134/agronj2019.03.0220

cv_ammif 49

Examples

library(metan)
model <- cv_ammi(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = GY,
nboot = 5,
naxis = 2)

cv_ammif Cross-validation procedure

Description

[Stable]

Cross-validation for estimation of all AMMI-family models

cv_ammif provides a complete cross-validation of replicate-based data using AMMI-family mod-
els. By default, the first validation is carried out considering the AMMIF (all possible axis used).
Considering this model, the original dataset is split up into two datasets: training set and validation
set. The ’training’ set has all combinations (genotype x environment) with N-1 replications. The
’validation’ set has the remaining replication. The splitting of the dataset into modeling and valida-
tion sets depends on the design informed. For Completely Randomized Block Design (default), and
alpha-lattice design (declaring block arguments), complete replicates are selected within environ-
ments. The remained replicate serves as validation data. If design = 'RCD' is informed, completely
randomly samples are made for each genotype-by-environment combination (Olivoto et al. 2019).
The estimated values for each member of the AMMI-family model are compared with the ’vali-
dation’ data. The Root Mean Square Prediction Difference (RMSPD) is computed. At the end of
boots, a list is returned.

IMPORTANT: If the data set is unbalanced (i.e., any genotype missing in any environment) the
function will return an error. An error is also observed if any combination of genotype-environment
has a different number of replications than observed in the trial.

Usage

cv_ammif(
.data,
env,
gen,
rep,
resp,
nboot = 200,

50 cv_ammif

block,
design = "RCBD",
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks. AT
LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE
CROSS-VALIDATION.

resp The response variable.

nboot The number of resamples to be used in the cross-validation. Defaults to 200.

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

design The experimental design used in each environment. Defaults to RCBD (Ran-
domized complete Block Design). For Completely Randomized Designs inform
design = 'CRD'.

verbose A logical argument to define if a progress bar is shown. Default is TRUE.

Value

An object of class cv_ammif with the following items:

• RMSPD: A vector with nboot-estimates of the Root Mean Squared Prediction Difference
between predicted and validating data.

• RMSPDmean: The mean of RMSPDmean estimates.

• Estimated: A data frame that contain the values (predicted, observed, validation) of the last
loop.

• Modeling: The dataset used as modeling data in the last loop

• Testing: The dataset used as testing data in the last loop.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

cv_blup 51

See Also

cv_ammi(), cv_blup()

Examples

library(metan)
model <- cv_ammif(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = EH,
nboot = 5)

plot(model)

cv_blup Cross-validation procedure

Description

[Stable]

Cross-validation for blup prediction.

This function provides a cross-validation procedure for mixed models using replicate-based data.
By default, complete blocks are randomly selected within each environment. In each iteration, the
original dataset is split up into two datasets: training and validation data. The ’training’ set has
all combinations (genotype x environment) with R - 1 replications. The ’validation’ set has the
remaining replication. The estimated values are compared with the ’validation’ data and the Root
Means Square Prediction Difference (Olivoto et al. 2019) is computed. At the end of boots, a list is
returned.

Usage

cv_blup(
.data,
env,
gen,
rep,
resp,
block = NULL,
nboot = 200,
random = "gen",
verbose = TRUE

)

52 cv_blup

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks. AT
LEAST THREE REPLICATES ARE REQUIRED TO PERFORM THE
CROSS-VALIDATION.

resp The response variable.

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. See how fixed and random effects are considered,
see the section Details.

nboot The number of resamples to be used in the cross-validation. Defaults to 200

random The effects of the model assumed to be random. See Details for more informa-
tion.

verbose A logical argument to define if a progress bar is shown. Default is TRUE.

Details

Six models may be fitted depending upon the values in block and random arguments.

• Model 1: block = NULL and random = "gen" (The default option). This model considers a
Randomized Complete Block Design in each environment assuming genotype and genotype-
environment interaction as random effects. Environments and blocks nested within environ-
ments are assumed to fixed factors.

• Model 2: block = NULL and random = "env". This model considers a Randomized Complete
Block Design in each environment treating environment, genotype-environment interaction,
and blocks nested within environments as random factors. Genotypes are assumed to be fixed
factors.

• Model 3: block = NULL and random = "all". This model considers a Randomized Complete
Block Design in each environment assuming a random-effect model, i.e., all effects (geno-
types, environments, genotype-vs-environment interaction and blocks nested within environ-
ments) are assumed to be random factors.

• Model 4: block is not NULL and random = "gen". This model considers an alpha-lattice de-
sign in each environment assuming genotype, genotype-environment interaction, and incom-
plete blocks nested within complete replicates as random to make use of inter-block informa-
tion (Mohring et al., 2015). Complete replicates nested within environments and environments
are assumed to be fixed factors.

• Model 5: block is not NULL and random = "env". This model considers an alpha-lattice
design in each environment assuming genotype as fixed. All other sources of variation (envi-
ronment, genotype-environment interaction, complete replicates nested within environments,
and incomplete blocks nested within replicates) are assumed to be random factors.

• Model 6: block is not NULL and random = "all". This model considers an alpha-lattice
design in each environment assuming all effects, except the intercept, as random factors.

data_alpha 53

IMPORTANT: An error is returned if any combination of genotype-environment has a different
number of replications than observed in the trial.

Value

An object of class cv_blup with the following items: * RMSPD: A vector with nboot-estimates of
the root mean squared prediction difference between predicted and validating data. * RMSPDmean
The mean of RMSPDmean estimates.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to
recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

See Also

cv_ammi(), cv_ammif()

Examples

library(metan)
model <- cv_blup(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = GY,
nboot = 5)

data_alpha Data from an alpha lattice design

Description

Alpha lattice design of spring oats

https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1007/s00122-015-2530-0

54 data_g

Format

A tibble with 72 observations on the following 5 variables.

• PLOT Plot number

• REP Replicate code

• BLOCK Incomplete block code

• GEN Genotype code

• YIELD Observed dry matter yield (tonnes/ha)

Details

A spring oats trial grown in Craibstone. There were 24 varieties in 3 replicates, each consisting of
6 incomplete blocks of 4 plots. Planted in a resolvable alpha design. The plots were laid out in a
single line.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

J. A. John & E. R. Williams (1995). Cyclic and computer generated designs, Chapman and Hall,
London. Page 146.

data_g Single maize trial

Description

This dataset contain data on 15 traits assessed in 13 maize hybrids. The experimental design was a
RCBD with 3 blocks and 1 replications per block. It is used as an example in the function gamem()
of the metan package.

Format

A tibble with 39 observations on the following 17 variables.

• GEN A factor with 13 levels; each level represents one maize hybrid.

• REP A factor with 3 levels; each level represents one replication/block.

• PH Plant height, in cm.

• EH Ear height, in cm.

• EP Ear position, i.e., the ratio EH/PH.

• EL Ear length, in cm.

• ED Ear diameter, in mm.

data_ge 55

• CL Cob length, in cm.

• CD Cob diameter, in mm.

• CW Cob weight, in g.

• KW Kernel weight, in cm.

• NR Number of rows.

• NKR Number of kernels per row.

• CDED Cob diameter / Ear diameter ratio.

• PERK Percentage of kernels.

• TKW Thousand-kernel weight

• NKE Number of kernels per row.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

Personal data

data_ge Multi-environment trial of oat

Description

This dataset contain data on two variables assessed in 10 genotypes growing in 14 environments.
The experimental design was a RCBD with 3 replicates (blocks). This data provide examples for
several functions of metan package.

Format

A tibble with 420 observations on the following 5 variables.

• ENV A factor with 14 levels; each level represents one cultivation environment.

• GEN A factor with 10 levels; each level represents one genotype.

• REP A factor with 3 levels; each level represents one replication/block.

• GY A continuous variable (grain yield) observed in each plot.

• HM A continuous variable (hectoliter mass) observed in each plot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

Personal data

56 data_ge2

data_ge2 Multi-environment trial of maize

Description

This dataset contain data on 15 traits assessed in 13 maize hybrids growing in 4 environments. The
experimental design was a RCBD with 3 blocks and 1 replications per block. It may be used as
example in several functions of metan package.

Format

A tibble with 156 observations on the following 18 variables.

• ENV A factor with 4 levels; each level represents one cultivation environment.

• GEN A factor with 13 levels; each level represents one maize hybrid.

• REP A factor with 3 levels; each level represents one replication/block.

• PH Plant height, in cm.

• EH Ear height, in cm.

• EP Ear position, i.e., the ratio EH/PH.

• EL Ear length, in cm.

• ED Ear diameter, in mm.

• CL Cob length, in cm.

• CD Cob diameter, in mm.

• CW Cob weight, in g.

• KW Kernel weight, in cm.

• NR Number of rows.

• NKR Number of kernels per row.

• CDED Cob diameter / Ear diameter ratio.

• PERK Percentage of kernels.

• TKW Thousand-kernel weight

• NKE Number of kernels per row.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Source

Personal data

data_simula 57

data_simula Simulate genotype and genotype-environment data

Description

[Experimental]

• g_simula() simulate replicated genotype data.

• ge_simula() simulate replicated genotype-environment data.

Usage

ge_simula(
ngen,
nenv,
nrep,
nvars = 1,
gen_eff = 20,
env_eff = 15,
rep_eff = 5,
ge_eff = 10,
res_eff = 5,
intercept = 100,
seed = NULL

)

g_simula(
ngen,
nrep,
nvars = 1,
gen_eff = 20,
rep_eff = 5,
res_eff = 5,
intercept = 100,
seed = NULL

)

Arguments

ngen The number of genotypes.

nenv The number of environments.

nrep The number of replications.

nvars The number of traits.

gen_eff The genotype effect.

env_eff The environment effect

58 data_simula

rep_eff The replication effect

ge_eff The genotype-environment interaction effect.

res_eff The residual effect. The effect is sampled from a normal distribution with zero
mean and standard deviation equal to res_eff. Be sure to change res_eff
when changin the intercept scale.

intercept The intercept.

seed The seed.

Details

The functions simulate genotype or genotype-environment data given a desired number of geno-
types, environments and effects. All effects are sampled from an uniform distribution. For example,
given 10 genotypes, and gen_eff = 30, the genotype effects will be sampled as runif(10, min =
-30, max = 30). Use the argument seed to ensure reproducibility. If more than one trait is used
(nvars > 1), the effects and seed can be passed as a numeric vector. Single numeric values will be
recycled with a warning when more than one trait is used.

Value

A data frame with the simulated traits

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Genotype data (5 genotypes and 3 replicates)
gen_data <-

g_simula(ngen = 5,
nrep = 3,
seed = 1)

gen_data
inspect(gen_data, plot = TRUE)

aov(V1 ~ GEN + REP, data = gen_data) %>% anova()

Genotype-environment data
5 genotypes, 3 environments, 4 replicates and 2 traits
df <-
ge_simula(ngen = 5,

nenv = 3,
nrep = 4,
nvars = 2,
seed = 1)

ge_plot(df, ENV, GEN, V1)
aov(V1 ~ ENV*GEN + ENV/REP, data = df) %>% anova()

Change genotype effect (trait 1 with fewer differences among genotypes)

desc_stat 59

Define different intercepts for the two traits
df2 <-
ge_simula(ngen = 10,

nenv = 3,
nrep = 4,
nvars = 2,
gen_eff = c(1, 50),
intercept = c(80, 1500),
seed = 1)

ge_plot(df2, ENV, GEN, V2)

desc_stat Descriptive statistics

Description

[Stable]

• desc_stat() Computes the most used measures of central tendency, position, and dispersion.

• desc_wider() is useful to put the variables in columns and grouping variables in rows. The
table is filled with a statistic chosen with the argument stat.

Usage

desc_stat(
.data = NULL,
...,
by = NULL,
stats = "main",
hist = FALSE,
level = 0.95,
digits = 4,
na.rm = FALSE,
verbose = TRUE,
plot_theme = theme_metan()

)

desc_wider(.data, which)

Arguments

.data The data to be analyzed. It can be a data frame (possible with grouped data
passed from dplyr::group_by() or a numeric vector. For desc_wider() .data
is an object of class desc_stat.

... A single variable name or a comma-separated list of unquoted variables names.
If no variable is informed, all the numeric variables from .data will be used.
Select helpers are allowed.

60 desc_stat

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

stats The descriptive statistics to show. This is used to filter the output after compu-
tation. Defaults to "main" (cv, max, mean median, min, sd.amo, se, ci). Other
allowed values are "all" to show all the statistics, "robust" to show robust
statistics, "quantile" to show quantile statistics, or chose one (or more) of the
following:

• "av.dev": average deviation.
• "ci.t": t-interval (95% confidence interval) of the mean.
• "ci.z": z-interval (95% confidence interval) of the mean.
• "cv": coefficient of variation.
• "iqr": interquartile range.
• "gmean": geometric mean.
• "hmean": harmonic mean.
• "Kurt": kurtosis.
• "mad": median absolute deviation.
• "max": maximum value.
• "mean": arithmetic mean.
• "median": median.
• "min": minimum value.
• "n": the length of the data.
• "n.valid": The valid (Not NA) number of elements
• "n.missing": The number of missing values
• "n.unique": The length of unique elements.
• "ps": the pseudo-sigma (iqr / 1.35).
• "q2.5", "q25", "q75", "q97.5": the percentile 2.5\ quartile, third quar-

tile, and percentile 97.5\
• range: The range of data).
• "sd.amo", "sd.pop": the sample and population standard deviation.
• "se": the standard error of the mean.
• "skew": skewness.
• "sum". the sum of the values.
• "sum.dev": the sum of the absolute deviations.
• "ave.sq.dev": the average of the squared deviations.
• "sum.sq.dev": the sum of the squared deviations.
• "n.valid": The size of sample with valid number (not NA).
• "var.amo", "var.pop": the sample and population variance.

Use a names to select the statistics. For example, stats = c("median, mean,
cv, n"). Note that the statistic names are not case-sensitive. Both comma or
space can be used as separator.

hist Logical argument defaults to FALSE. If hist = TRUE then a histogram is created
for each selected variable.

desc_stat 61

level The confidence level to compute the confidence interval of mean. Defaults to
0.95.

digits The number of significant digits.

na.rm Logical. Should missing values be removed? Defaults to FALSE.

verbose Logical argument. If verbose = FALSE the code is run silently.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

which A statistic to fill the table.

Value

• desc_stats() returns a tibble with the statistics in the columns and variables (with possible
grouping factors) in rows.

• desc_wider() returns a tibble with variables in columns and grouping factors in rows.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
#===#
Example 1: main statistics (coefficient of variation, maximum,#
mean, median, minimum, sample standard deviation, standard
error and confidence interval of the mean) for all numeric
variables in data
#===#

desc_stat(data_ge2)

#===#
#Example 2: robust statistics using a numeric vector as input #
data
#===#
vect <- data_ge2$TKW
desc_stat(vect, stats = "robust")

#===#
Example 3: Select specific statistics. In this example, NAs
are removed before analysis with a warning message
#===#
desc_stat(c(12, 13, 19, 21, 8, NA, 23, NA),

stats = c('mean, se, cv, n, n.valid'),
na.rm = TRUE)

#===#
Example 4: Select specific variables and compute statistics by#
levels of a factor variable (GEN)
#===#

62 doo

stats <-
desc_stat(data_ge2,

EP, EL, EH, ED, PH, CD,
by = GEN)

stats

To get a 'wide' format with the maximum values for all variables
desc_wider(stats, max)

#===#
Example 5: Compute all statistics for all numeric variables
by two or more factors. Note that group_by() was used to pass
grouped data to the function desc_stat()
#===#

data_ge2 %>%
group_by(ENV, GEN) %>%
desc_stat()

doo Alternative to dplyr::do for doing anything

Description

Provides an alternative to the dplyr:do() using nest(), mutate() and map() to apply a function
to a grouped data frame.

Usage

doo(.data, .fun, ..., unnest = TRUE)

Arguments

.data a (grouped) data frame

.fun A function, formula, or atomic vector.

... Additional arguments passed on to .fun

unnest Logical argument defaults to TRUE to control if results of .fun should be unnested.
Valid only if the result is of class data.frame or tbl_df.

Details

If the applied function returns a data frame, then the output will be automatically unnested. Oth-
erwise, the output includes the grouping variables and a column named "data" , which is a "list-
columns" containing the results for group combinations.

ecovalence 63

Value

a data frame

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Head the first two lines of each environment
data_ge2 %>%
group_by(ENV) %>%
doo(~head(., 2))

Genotype analysis for each environment using 'gafem()'
variable PH
data_ge2 %>%

group_by(ENV) %>%
doo(~gafem(., GEN, REP, PH, verbose = FALSE))

ecovalence Stability analysis based on Wricke’s model

Description

[Stable]

The function computes the ecovalence (Wricke, 1965) for stability analysis.

Usage

ecovalence(.data, env, gen, rep, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

64 env_dissimilarity

Value

An object of class ecovalence containing the results for each variable used in the argument resp.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg
52:127-138.

Examples

library(metan)
out <- ecovalence(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

env_dissimilarity Dissimilarity between environments

Description

[Stable]
Computes the dissimilarity between environments based on several approaches. See the section
details for more details.

Usage

env_dissimilarity(.data, env, gen, rep, resp)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

env_dissimilarity 65

Details

Roberteson (1959) proposed the partition of the mean square of the genotype-environment in-
teraction (MS_GE) into single (S) and complex (C) parts, where S = 1

2 (
√
Q1 −

√
Q2)2) and

C = (1− r)
√
Q1−Q2, being r the correlation between the genotype’s average in the two environ-

ments; and Q1 and Q2 the genotype mean square in the environments 1 and 2, respectively. Cruz
and Castoldi (1991) proposed a new decomposition of the MS_GE, in which the complex part is
given by C =

√
(1− r)3 ×Q1×Q2.

Value

A list with the following matrices:

• SPART_CC: The percentage of the single (non cross-over) part of the interaction between geno-
types and pairs of environments according to the method proposed by Cruz and Castoldi
(1991).

• CPART_CC: The percentage of the complex (cross-over) part of the interaction between geno-
types and pairs of environments according to the method proposed by Cruz and Castoldi
(1991).

• SPART_RO: The percentage of the single (non cross-over) part of the interaction between geno-
types and pairs of environments according to the method proposed by Robertson (1959).

• CPART_RO: The percentage of the complex (cross-over) part of the interaction between geno-
types and pairs of environments according to the method proposed by Robertson (1959).

• MSGE: Interaction mean square between genotypes and pairs of environments.

• SSGE: Interaction sum of square between genotypes and pairs of environments.

• correlation: Correlation coefficients between genotypes’s average in each pair of environ-
ment.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Cruz, C.D., Castoldi, F. (1991). Decomposicao da interacao genotipos x ambientes em partes sim-
ples e complexa. Ceres, 38:422-430.

Robertson, A. (1959). Experimental design on the measurement of heritabilities and genetic corre-
lations. biometrical genetics. New York: Pergamon Press.

Examples

library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
print(mod)

66 env_stratification

env_stratification Environment stratification

Description

[Stable]
Computes environment stratification based on factor analysis.

Usage

env_stratification(
.data,
env,
gen,
resp,
use = "complete.obs",
mineval = 1,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

use The method for computing covariances in the presence of missing values. De-
faults to complete.obs, i.e., missing values are handled by casewise deletion.

mineval The minimum value so that an eigenvector is retained in the factor analysis.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class env_stratification which is a list with one element per analyzed trait. For
each trait, the following values are given.

• data The genotype-environment means.

• cormat: The correlation matrix among the environments.

• PCA: The eigenvalues and explained variance.

• FA: The factor analysis.

• env_strat: The environmental stratification.

• mega_env_code: The environments within each mega-environment.

fai_blup 67

• mega_env_stat: The statistics for each mega-environment.

• KMO: The result for the Kaiser-Meyer-Olkin test.

• MSA: The measure of sampling adequacy for individual variable.

• communalities_mean: The communalities’ mean.

• initial_loadings: The initial loadings.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Murakami, D.M.D., and C.D.C. Cruz. 2004. Proposal of methodologies for environment stratifica-
tion and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 4:7-11.

See Also

env_dissimilarity()

Examples

library(metan)
model <-
env_stratification(data_ge,

env = ENV,
gen = GEN,
resp = everything())

gmd(model)

fai_blup Multi-trait selection index

Description

[Stable]
Multitrait index based on factor analysis and ideotype-design proposed by Rocha et al. (2018).

Usage

fai_blup(
.data,
use_data = "blup",
DI = NULL,
UI = NULL,
SI = 15,

68 fai_blup

mineval = 1,
verbose = TRUE

)

Arguments

.data An object of class waasb or a two-way table with genotypes in the rows and
traits in columns. In the last case the row names must contain the genotypes
names.

use_data Define which data to use If .data is an object of class gamem. Defaults to
"blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means
instead BLUPs for computing the index.

DI, UI A vector of the same length of .data to construct the desirable (DI) and undesir-
able (UI) ideotypes. For each element of the vector, allowed values are 'max',
'min', 'mean', or a numeric value. Use a comma-separated vector of text. For
example, DI = c("max, max, min, min"). By default, DI is set to "max" for all
traits and UI is set to "min" for all traits.

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes. Defaults to 15.

mineval The minimum value so that an eigenvector is retained in the factor analysis.

verbose Logical value. If TRUE some results are shown in console.

Value

An object of class fai_blup with the following items:

• data The data (BLUPS) used to compute the index.

• eigen The eigenvalues and explained variance for each axis.

• FA The results of the factor analysis.

• canonical_loadings The canonical loadings for each factor retained.

• FAI A list with the FAI-BLUP index for each ideotype design.

• sel_dif_trait A list with the selection differential for each ideotype design.

• sel_gen The selected genotypes.

• ideotype_construction A list with the construction of the ideotypes.

• total_gain A list with the total gain for variables to be increased or decreased.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Rocha, J.R.A.S.C.R, J.C. Machado, and P.C.S. Carneiro. 2018. Multitrait index based on factor
analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy.
GCB Bioenergy 10:52-60. doi:10.1111/gcbb.12443

https://doi.org/10.1111/gcbb.12443

find_outliers 69

Examples

library(metan)

mod <- waasb(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

FAI <- fai_blup(mod,
SI = 15,
DI = c('max, max'),
UI = c('min, min'))

find_outliers Find possible outliers in a dataset

Description

[Stable]
Find possible outliers in the dataset.

Usage

find_outliers(
.data = NULL,
var = NULL,
by = NULL,
plots = FALSE,
coef = 1.5,
verbose = TRUE,
plot_theme = theme_metan()

)

Arguments

.data The data to be analyzed. Must be a dataframe or an object of class split_factors.

var The variable to be analyzed.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

plots If TRUE, then histograms and boxplots are shown.

coef The multiplication coefficient, defaults to 1.5. For more details see ?boxplot.stat.

verbose If verbose = TRUE then some results are shown in the console.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

70 Fox

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)

find_outliers(data_ge2, var = PH, plots = TRUE)

Find outliers within each environment
find_outliers(data_ge2, var = PH, by = ENV)

Fox Fox’s stability function

Description

[Stable]
Performs a stability analysis based on the criteria of Fox et al. (1990), using the statistical "TOP
third" only. A stratified ranking of the genotypes at each environment is done. The proportion of
locations at which the genotype occurred in the top third are expressed in the output.

Usage

Fox(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class Fox, which is a list containing the results for each variable used in the argument
resp. For each variable, a tibble with the following columns is returned.

• GEN the genotype’s code.

• mean the mean for the response variable.

• TOP The proportion of locations at which the

gafem 71

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation
of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364.

Examples

library(metan)
out <- Fox(data_ge2, ENV, GEN, PH)
print(out)

gafem Genotype analysis by fixed-effect models

Description

[Stable]
One-way analysis of variance of genotypes conducted in both randomized complete block and
alpha-lattice designs.

Usage

gafem(
.data,
gen,
rep,
resp,
block = NULL,
by = NULL,
prob = 0.05,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to, Genotypes, replication/block and
response variable(s).

gen The name of the column that contains the levels of the genotypes, that will be
treated as random effect.

rep The name of the column that contains the levels of the replications (assumed to
be fixed).

https://doi.org/10.1007/BF00040364

72 gafem

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed. Use the function gamem() to analyze a one-way trial with mixed-effect
models.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to fit a fixed-effect
model for each environment. In this case, an object of class gafem_grouped is
returned. mgidi() can then be used to compute the mgidi index within each
environment.

prob The error probability. Defaults to 0.05.
verbose Logical argument. If verbose = FALSE the code are run silently.

Details

gafem analyses data from a one-way genotype testing experiment. By default, a randomized com-
plete block design is used according to the following model:

Yij = m+ gi + rj + eij

where Yij is the response variable of the ith genotype in the jth block; m is the grand mean (fixed);
gi is the effect of the ith genotype; rj is the effect of the jth replicate; and eij is the random error.

When block is informed, then a resolvable alpha design is implemented, according to the following
model:

Yijk = m+ gi + rj + bjk + eijk

where where yijk is the response variable of the ith genotype in the kth block of the jth replicate;
m is the intercept, ti is the effect for the ith genotype rj is the effect of the jth replicate, bjk is the
effect of the kth incomplete block of the jth replicate, and eijk is the plot error effect corresponding
to yijk. All effects, except the random error are assumed to be fixed.

Value

A list where each element is the result for one variable containing the following objects:

• anova: The one-way ANOVA table.
• model: The model with of lm.
• augment: Information about each observation in the dataset. This includes predicted values

in the fitted column, residuals in the resid column, standardized residuals in the stdres
column, the diagonal of the ’hat’ matrix in the hat, and standard errors for the fitted values in
the se.fit column.

• hsd: The Tukey’s ’Honest Significant Difference’ for genotype effect.
• details: A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand

mean; Min, the minimum observed (returning the genotype and replication/block); Max the
maximum observed, MinGEN the loser winner genotype, MaxGEN, the winner genotype.

gai 73

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

get_model_data() gamem()

Examples

library(metan)
RCBD
rcbd <- gafem(data_g,

gen = GEN,
rep = REP,
resp = c(PH, ED, EL, CL, CW))

Fitted values
get_model_data(rcbd)

ALPHA-LATTICE DESIGN
alpha <- gafem(data_alpha,

gen = GEN,
rep = REP,
block = BLOCK,
resp = YIELD)

Fitted values
get_model_data(alpha)

gai Geometric adaptability index

Description

[Stable]
Performs a stability analysis based on the geometric mean (GAI), according to the following model
(Mohammadi and Amri, 2008):

GAI =
E
√
Ȳ 1 + Ȳ 2 +...+ Ȳ i

where Ȳ1, Ȳ2, and Ȳi are the mean yields of the first, second and i-th genotypes across environments,
and E is the number of environments

74 gai

Usage

gai(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class gai, which is a list containing the results for each variable used in the argument
resp. For each variable, a tibble with the following columns is returned.

• GEN the genotype’s code.

• GAI Geometric adaptability index

• GAI_R The rank for the GAI value.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for
selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3),
419-432. doi:10.1007/s1068100796006.

Examples

library(metan)
out <- gai(data_ge2,

env = ENV,
gen = GEN,
resp = c(EH, PH, EL, CD, ED, NKE))

https://doi.org/10.1007/s10681-007-9600-6

gamem 75

gamem Genotype analysis by mixed-effect models

Description

[Stable]
Analysis of genotypes in single experiments using mixed-effect models with estimation of genetic
parameters.

Usage

gamem(
.data,
gen,
rep,
resp,
block = NULL,
by = NULL,
prob = 0.05,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to, Genotypes, replication/block and
response variable(s).

gen The name of the column that contains the levels of the genotypes, that will be
treated as random effect.

rep The name of the column that contains the levels of the replications (assumed to
be fixed).

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then an alpha-lattice design is employed considering
block as random to make use of inter-block information, whereas the complete
replicate effect is always taken as fixed, as no inter-replicate information was to
be recovered (Mohring et al., 2015).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to fit a mixed-effect
model for each environment. In this case, an object of class gamem_grouped
is returned. mgidi() can then be used to compute the mgidi index within each
environment.

prob The probability for estimating confidence interval for BLUP’s prediction.

verbose Logical argument. If verbose = FALSE the code are run silently.

76 gamem

Details

gamem analyses data from a one-way genotype testing experiment. By default, a randomized com-
plete block design is used according to the following model:

Yij = m+ gi + rj + eij

where Yij is the response variable of the ith genotype in the jth block; m is the grand mean (fixed);
gi is the effect of the ith genotype (assumed to be random); rj is the effect of the jth replicate
(assumed to be fixed); and eij is the random error.

When block is informed, then a resolvable alpha design is implemented, according to the following
model:

Yijk = m+ gi + rj + bjk + eijk

where where yijk is the response variable of the ith genotype in the kth block of the jth replicate;
m is the intercept, ti is the effect for the ith genotype rj is the effect of the jth replicate, bjk is the
effect of the kth incomplete block of the jth replicate, and eijk is the plot error effect corresponding
to yijk.

Value

An object of class gamem or gamem_grouped, which is a list with the following items for each
element (variable):

• fixed: Test for fixed effects.

• random: Variance components for random effects.

• LRT: The Likelihood Ratio Test for the random effects.

• BLUPgen: The estimated BLUPS for genotypes

• ranef: The random effects of the model

• modellme The mixed-effect model of class lmerMod.

• residuals The residuals of the mixed-effect model.

• model_lm The fixed-effect model of class lm.

• residuals_lm The residuals of the fixed-effect model.

• Details: A tibble with the following data: Ngen, the number of genotypes; OVmean, the grand
mean; Min, the minimum observed (returning the genotype and replication/block); Max the
maximum observed, MinGEN the winner genotype, MaxGEN, the loser genotype.

• ESTIMATES: A tibble with the values:

– Gen_var, the genotypic variance and ;
– rep:block_var block-within-replicate variance (if an alpha-lattice design is used by in-

forming the block in block);
– Res_var, the residual variance;
– Gen (%), rep:block (%), and Res (%) the respective contribution of variance com-

ponents to the phenotypic variance;
– H2, broad-sense heritability;

gamem 77

– h2mg, heritability on the entry-mean basis;
– Accuracy, the accuracy of selection (square root of h2mg);
– CVg, genotypic coefficient of variation;
– CVr, residual coefficient of variation;
– CV ratio, the ratio between genotypic and residual coefficient of variation.

• formula The formula used to fit the mixed-model.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to
recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

See Also

get_model_data() waasb()

Examples

library(metan)

fitting the model considering an RCBD
Genotype as random effects

rcbd <- gamem(data_g,
gen = GEN,
rep = REP,
resp = c(PH, ED, EL, CL, CW, KW, NR, TKW, NKE))

Likelihood ratio test for random effects
get_model_data(rcbd, "lrt")

Variance components
get_model_data(rcbd, "vcomp")

Genetic parameters
get_model_data(rcbd, "genpar")

random effects
get_model_data(rcbd, "ranef")

Predicted values
predict(rcbd)

fitting the model considering an alpha-lattice design
Genotype and block-within-replicate as random effects
Note that block effect was now informed.

https://doi.org/10.1007/s00122-015-2530-0

78 gamem_met

alpha <- gamem(data_alpha,
gen = GEN,
rep = REP,
block = BLOCK,
resp = YIELD)

Genetic parameters
get_model_data(alpha, "genpar")

Random effects
get_model_data(alpha, "ranef")

gamem_met Genotype-environment analysis by mixed-effect models

Description

[Stable]
Genotype analysis in multi-environment trials using mixed-effect or random-effect models.

The nature of the effects in the model is chosen with the argument random. By default, the exper-
imental design considered in each environment is a randomized complete block design. If block
is informed, a resolvable alpha-lattice design (Patterson and Williams, 1976) is implemented. The
following six models can be fitted depending on the values of random and block arguments.

• Model 1: block = NULL and random = "gen" (The default option). This model considers a
Randomized Complete Block Design in each environment assuming genotype and genotype-
environment interaction as random effects. Environments and blocks nested within environ-
ments are assumed to fixed factors.

• Model 2: block = NULL and random = "env". This model considers a Randomized Complete
Block Design in each environment treating environment, genotype-environment interaction,
and blocks nested within environments as random factors. Genotypes are assumed to be fixed
factors.

• Model 3: block = NULL and random = "all". This model considers a Randomized Complete
Block Design in each environment assuming a random-effect model, i.e., all effects (geno-
types, environments, genotype-vs-environment interaction and blocks nested within environ-
ments) are assumed to be random factors.

• Model 4: block is not NULL and random = "gen". This model considers an alpha-lattice de-
sign in each environment assuming genotype, genotype-environment interaction, and incom-
plete blocks nested within complete replicates as random to make use of inter-block informa-
tion (Mohring et al., 2015). Complete replicates nested within environments and environments
are assumed to be fixed factors.

• Model 5: block is not NULL and random = "env". This model considers an alpha-lattice
design in each environment assuming genotype as fixed. All other sources of variation (envi-
ronment, genotype-environment interaction, complete replicates nested within environments,
and incomplete blocks nested within replicates) are assumed to be random factors.

gamem_met 79

• Model 6: block is not NULL and random = "all". This model considers an alpha-lattice
design in each environment assuming all effects, except the intercept, as random factors.

Usage

gamem_met(
.data,
env,
gen,
rep,
resp,
block = NULL,
by = NULL,
random = "gen",
prob = 0.05,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then an alpha-lattice design is employed considering
block as random to make use of inter-block information, whereas the complete
replicate effect is always taken as fixed, as no inter-replicate information was to
be recovered (Mohring et al., 2015).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to analyze environ-
ments within mega-environments. In this case, an object of class waasb_grouped
is returned.

random The effects of the model assumed to be random. Defaults to random = "gen".
See Details to see the random effects assumed depending on the experimental
design of the trials.

prob The probability for estimating confidence interval for BLUP’s prediction.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class waasb with the following items for each variable:

• fixed Test for fixed effects.

80 gamem_met

• random Variance components for random effects.

• LRT The Likelihood Ratio Test for the random effects.

• BLUPgen The random effects and estimated BLUPS for genotypes (If random = "gen" or
random = "all")

• BLUPenv The random effects and estimated BLUPS for environments, (If random = "env"
or random = "all").

• BLUPint The random effects and estimated BLUPS of all genotypes in all environments.

• MeansGxE The phenotypic means of genotypes in the environments.

• modellme The mixed-effect model of class lmerMod.

• residuals The residuals of the mixed-effect model.

• model_lm The fixed-effect model of class lm.

• residuals_lm The residuals of the fixed-effect model.

• Details A list summarizing the results. The following information are shown: Nenv, the num-
ber of environments in the analysis; Ngen the number of genotypes in the analysis; Mean the
grand mean; SE the standard error of the mean; SD the standard deviation. CV the coefficient
of variation of the phenotypic means, estimating WAASB, Min the minimum value observed
(returning the genotype and environment), Max the maximum value observed (returning the
genotype and environment); MinENV the environment with the lower mean, MaxENV the envi-
ronment with the larger mean observed, MinGEN the genotype with the lower mean, MaxGEN
the genotype with the larger.

• ESTIMATES A tibble with the genetic parameters (if random = "gen" or random = "all")
with the following columns: Phenotypic variance the phenotypic variance; Heritability
the broad-sense heritability; GEr2 the coefficient of determination of the interaction effects;
h2mg the heritability on the mean basis; Accuracy the selective accuracy; rge the genotype-
environment correlation; CVg the genotypic coefficient of variation; CVr the residual coeffi-
cient of variation; CV ratio the ratio between genotypic and residual coefficient of variation.

• formula The formula used to fit the mixed-model.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to
recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

mtsi() waas() get_model_data() plot_scores()

https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1007/s00122-015-2530-0

get_corvars 81

Examples

library(metan)
#===#
Example 1: Analyzing all numeric variables assuming genotypes
as random effects
#===#
model <- gamem_met(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

Distribution of random effects (first variable)
plot(model, type = "re")

Genetic parameters
get_model_data(model, "genpar")

#===#
Example 2: Unbalanced trials
assuming all factors as random effects
#===#
un_data <- data_ge %>%

remove_rows(1:3) %>%
droplevels()

model2 <- gamem_met(un_data,
env = ENV,
gen = GEN,
rep = REP,
random = "all",
resp = GY)

get_model_data(model2)

get_corvars Generate normal, correlated variables

Description

[Stable]

Given the mean and desired correlations, generate normal, correlated variables.

Usage

get_corvars(n = 10, mu, sigma, tol = 1e-06, seed = NULL)

82 get_covmat

Arguments

n The number of samples required.

mu A vector with the means for the variables.

sigma A symmetric, positive-definite matrix with the (co)variance or correlation matrix
of the variables.

tol Tolerance (relative to largest variance) for numerical lack of positive-definiteness
in sigma.

seed An integer value interpreted as seed.

Value

A tibble containing the simulated data.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

sigma <- matrix(c(1, .3, 0,
.3, 1, .9,
0, .9, 1),3,3)

mu <- c(6,50,5)

df <- get_corvars(n = 10000, mu = mu, sigma = sigma, seed = 101010)
mean_by(df)
cor(df)

get_covmat Generate a covariance matrix

Description

[Stable]
Given the variances and desired correlations, generate a covariance matrix

Usage

get_covmat(cormat, var)

Arguments

cormat A symmetric matrix with desired correlations.

var A numeric vector with variances. It must have length equal to the number of
elements in the diagonal of cormat.

get_dist 83

Value

A (co)variance matrix

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

cormat <-
matrix(c(1, 0.9, -0.4,

0.9, 1, 0.6,
-0.4, 0.6, 1),

nrow = 3,
ncol = 3)

get_covmat(cormat, var = c(16, 25, 9))

get_dist Get a distance matrix

Description

[Stable]

Get the distance matrices from objects fitted with the function clustering(). This is especially
useful to get distance matrices from several objects to be further analyzed using pairs_mantel().

Usage

get_dist(..., digits = 2)

Arguments

... Object(s) of class clustering.]

digits The number of significant figures. Defaults to 2.

Value

A list of class clustering.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

84 get_model_data

Examples

library(metan)
d <- data_ge2 %>%

mean_by(GEN) %>%
column_to_rownames("GEN") %>%
clustering()

get_dist(d)

get_model_data Get data from a model easily

Description

[Experimental]

Usage

get_model_data(x, what = NULL, type = "GEN", verbose = TRUE)

gmd(x, what = NULL, type = "GEN", verbose = TRUE)

sel_gen(x)

Arguments

x An object created with the functions ammi_indexes(), anova_ind(), anova_joint(),
can_corr() ecovalence(), Fox(), gai(), gamem(),gafem(), ge_acv(), ge_means(),
ge_reg(), gytb(), mgidi(), performs_ammi(), blup_indexes(), Shukla(),
superiority(), waas() or waasb().

what What should be captured from the model. See more in section Details.

type Chose if the statistics must be show by genotype (type = "GEN", default) or
environment (TYPE = "ENV"), when possible.

verbose Logical argument. If verbose = FALSE the code will run silently.

Details

• get_model_data() Easily get data from some objects generated in the metan package such
as the WAASB and WAASBY indexes (Olivoto et al., 2019a, 2019b) BLUPs, variance com-
ponents, details of AMMI models and AMMI-based stability statistics.

• gmd() Is a shortcut to get_model_data.

• sel_gen() Extracts the selected genotypes by a given index.

Bellow are listed the options allowed in the argument what depending on the class of the object

Objects of class ammi_indexes:

get_model_data 85

• "ASV" AMMI stability value.

• "EV" Averages of the squared eigenvector values.

• "SIPC" Sums of the absolute value of the IPCA scores.

• "WAAS" Weighted average of absolute scores (default).

• "ZA" Absolute value of the relative contribution of IPCAs to the interaction.

Objects of class anova_ind:

• "MEAN"The mean value of the variable
• "DFG", "DFB", "DFCR", "DFIB_R", "DFE". The degree of freedom for genotypes, blocks

(randomized complete block design), complete replicates, incomplete blocks within replicates
(alpha-lattice design), and error, respectively.

• "MSG", "FCG", "PFG" The mean square, F-calculated and P-values for genotype effect,
respectively.

• "MSB", "FCB", "PFB" The mean square, F-calculated and P-values for block effect in ran-
domized complete block design.

• "MSCR", "FCR", "PFCR" The mean square, F-calculated and P-values for complete replicates
in alpha lattice design.

• "MSIB_R", "FCIB_R", "PFIB_R" The mean square, F-calculated and P-values for incomplete
blocks within complete replicates, respectively (for alpha lattice design only).

• "MSE" The mean square of error.

• "CV" The coefficient of variation.

• "h2" The broad-sence heritability

• "AS" The accucary of selection (square root of h2).

• "FMAX" The Hartley’s test (the ratio of the largest MSE to the smallest MSE).

Objects of class anova_joint or gafem:

• "Y" The observed values.

• "h2" The broad-sense heritability.

• "Sum Sq" Sum of squares.

• "Mean Sq" Mean Squares.

• "F value" F-values.

• "Pr(>F)" P-values.

• ".fitted" Fitted values (default).

• ".resid" Residuals.

• ".stdresid" Standardized residuals.

• ".se.fit" Standard errors of the fitted values.

• "details" Details.

Objects of class Annicchiarico and Schmildt:

• "Sem_rp" The standard error of the relative mean performance (Schmildt).

• "Mean_rp" The relative performance of the mean.

86 get_model_data

• "rank" The rank for genotypic confidence index.

• "Wi" The genotypic confidence index.

Objects of class can_corr:

• "coefs" The canonical coefficients (default).

• "loads" The canonical loadings.

• "crossloads" The canonical cross-loadings.

• "canonical" The canonical correlations and hypothesis testing.

Objects of class colindiag:

• "cormat" The correlation matrix betwen predictors.

• "corlist" The correlations in a ’long’ format

• "evalevet" The eigenvalue with associated eigenvectors

• "VIF" The Variance Inflation Factor

• "indicators" The colinearity indicators

Objects of class ecovalence:

• "Ecoval" Ecovalence value (default).

• "Ecov_perc" Ecovalence in percentage value.

• "rank" Rank for ecovalence.

Objects of class fai_blup: See the Value section of fai_blup() to see valid options for what
argument.

Objects of class ge_acv:

• "ACV" The adjusted coefficient of variation (default).

• "ACV_R" The rank for adjusted coefficient of variation.

Objects of class ge_polar:

• "POLAR" The Power Law Residuals (default).

• "POLAR_R" The rank for Power Law Residuals.

Objects of class ge_reg:

• GEN: the genotypes.

• b0 and b1 (default): the intercept and slope of the regression, respectively.

• t(b1=1): the calculated t-value

• pval_t: the p-value for the t test.

• s2di the deviations from the regression (stability parameter).

• F(s2di=0): the F-test for the deviations.

• pval_f: the p-value for the F test;

• RMSE the root-mean-square error.

get_model_data 87

• R2 the determination coefficient of the regression.

Objects of class ge_effects:

• For objects of class ge_effects no argument what is required.

Objects of class ge_means:

• "ge_means" Genotype-environment interaction means (default).

• "env_means" Environment means.

• "gen_means" Genotype means.

Objects of class gge:

• "scores" The scores for genotypes and environments for all the analyzed traits (default).

• "exp_var" The eigenvalues and explained variance.

• "projection" The projection of each genotype in the AEC coordinates in the stability GGE
plot

Objects of class gytb:

• "gyt" Genotype by yield*trait table (Default).

• "stand_gyt" The standardized (zero mean and unit variance) Genotype by yield*trait table.

• "si" The superiority index (sum standardized value across all yield*trait combinations).

Objects of class mgidi: See the Value section of mgidi() to see valid options for what argument.

Objects of class mtsi: See the Value section of mtsi() to see valid options for what argument.

**Objects of class path_coeff

• "coef" Path coefficients

• "eigenval" Eigenvalues and eigenvectors.

• "vif " Variance Inflation Factor

**Objects of class path_coeff_seq

• "resp_fc" Coefficients of primary predictors and response

• "resp_sc" Coefficients of secondary predictors and response

• "resp_sc2" contribution to the total effects through primary traits

• "fc_sc_coef" Coefficients of secondary predictors and primary predictors.

Objects of class Shukla:

• "rMean" Rank for the mean.

• "ShuklaVar" Shukla’s stablity variance (default).

• "rShukaVar" Rank for Shukla’s stablity variance.

• "ssiShukaVar" Simultaneous selection index.

88 get_model_data

Objects of class sh: See the Value section of Smith_Hazel() to see valid options for what argu-
ment.

Objects of class Fox:

• "TOP" The proportion of locations at which the genotype occurred in the top third (default).

Objects of class gai:

• "GAI" The geometric adaptability index (default).

• "GAI_R" The rank for the GAI values.

Objects of class superiority:

• "Pi_a" The superiority measure for all environments (default).

• "R_a" The rank for Pi_a.

• "Pi_f" The superiority measure for favorable environments.

• "R_f" The rank for Pi_f.

• "Pi_u" The superiority measure for unfavorable environments.

• "R_u" The rank for Pi_u.

Objects of class Huehn:

• "S1" Mean of the absolute rank differences of a genotype over the n environments (default).

• "S2" variance among the ranks over the k environments.

• "S3" Sum of the absolute deviations.

• "S6" Relative sum of squares of rank for each genotype.

• "S1_R", "S2_R", "S3_R", and "S6_R", the ranks for S1, S2, S3, and S6, respectively.

Objects of class Thennarasu:

• "N1" First statistic (default).

• "N2" Second statistic.

• "N3" Third statistic.

• "N4" Fourth statistic.

• "N1_R", "N2_R", "N3_R", and "N4_R", The ranks for the statistics.

Objects of class performs_ammi:

• "PC1", "PC2", ..., "PCn" The values for the nth interaction principal component axis.

• "ipca_ss" Sum of square for each IPCA.

• "ipca_ms" Mean square for each IPCA.

• "ipca_fval" F value for each IPCA.

• "ipca_pval" P-value for for each IPCA.

• "ipca_expl" Explained sum of square for each IPCA (default).

• "ipca_accum" Accumulated explained sum of square.

get_model_data 89

Objects of class waas, waas_means, and waasb:

• "PC1", "PC2", ..., "PCn" The values for the nth interaction principal component axis.

• "WAASB" The weighted average of the absolute scores (default for objects of class waas).

• "PctResp" The rescaled values of the response variable.

• "PctWAASB" The rescaled values of the WAASB.

• "wResp" The weight for the response variable.

• "wWAASB" The weight for the stability.

• "OrResp" The ranking regarding the response variable.

• "OrWAASB" The ranking regarding the WAASB.

• "OrPC1" The ranking regarding the first principal component axix.

• "WAASBY" The superiority index WAASBY.

• "OrWAASBY" The ranking regarding the superiority index.

Objects of class gamem and waasb:

• "blupge" Best Linear Unbiased Prediction for genotype-environment interaction (mixed-
effect model, class waasb).

• "blupg" Best Linear Unbiased Prediction for genotype effect.

• "bluege" Best Linear Unbiased Estimation for genotype-environment interaction (fixed-effect
model, class waasb).

• "blueg" Best Linear Unbiased Estimation for genotype effect (fixed model).

• "data" The data used.

• "details" The details of the trial.

• "genpar" Genetic parameters (default).

• "gcov" The genotypic variance-covariance matrix.

• "pcov" The phenotypic variance-covariance matrix.

• "gcor" The genotypic correlation matrix.

• "pcor" The phenotypic correlation matrix.

• "h2" The broad-sense heritability.

• "lrt" The likelihood-ratio test for random effects.

• "vcomp" The variance components for random effects.

• "ranef" Random effects.

Objects of class blup_ind

• "HMGV","HMGV_R" For harmonic mean of genotypic values or its ranks.
• "RPGV", RPGV_Y" For relative performance of genotypic values or its ranks.
• "HMRPGV", "HMRPGV_R" For harmonic mean of relative performance of genotypic values or

its ranks.
• "WAASB", "WAASB_R" For the weighted average of absolute scores from the singular or its

ranks. value decomposition of the BLUPs for GxE interaction or its ranks.

90 get_model_data

Value

A tibble showing the values of the variable chosen in argument what.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern
Italy. J. Genet. Breed. 46:269-278.

Dias, P.C., A. Xavier, M.D.V. de Resende, M.H.P. Barbosa, F.A. Biernaski, R.A. Estopa. 2018. Ge-
netic evaluation of Pinus taeda clones from somatic embryogenesis and their genotype x environ-
ment interaction. Crop Breed. Appl. Biotechnol. 18:55-64. doi:10.1590/198470332018v18n1a8

Azevedo Peixoto, L. de, P.E. Teodoro, L.A. Silva, E.V. Rodrigues, B.G. Laviola, and L.L. Bhering.
2018. Jatropha half-sib family selection with high adaptability and genotypic stability. PLoS One
13:e0199880. doi:10.1371/journal.pone.0199880

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci.
6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation
of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a.
Mean performance and stability in multi-environment trials I: Combining features of AMMI and
BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019b. Mean performance and
stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969.
doi:10.2134/agronj2019.03.0221

Purchase, J.L., H. Hatting, and C.S. van Deventer. 2000. Genotype vs environment interaction of
winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance.
South African J. Plant Soil 17:101-107. doi:10.1080/02571862.2000.10634878

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento ge-
netico. Embrapa Florestas, Colombo

Sneller, C.H., L. Kilgore-Norquest, and D. Dombek. 1997. Repeatability of Yield Stability Statis-
tics in Soybean. Crop Sci. 37:383-390. doi:10.2135/cropsci1997.0011183X003700020013x

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for
selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3),
419-432. doi:10.1007/s1068100796006

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg
52:127-138.

Zali, H., E. Farshadfar, S.H. Sabaghpour, and R. Karimizadeh. 2012. Evaluation of genotype vs
environment interaction in chickpea using measures of stability from AMMI model. Ann. Biol.
Res. 3:3126-3136.

https://doi.org/10.1590/1984-70332018v18n1a8
https://doi.org/10.1371/journal.pone.0199880
https://doi.org/10.2135/cropsci1966.0011183X000600010011x
https://doi.org/10.1007/BF00040364
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2134/agronj2019.03.0221
https://doi.org/10.1080/02571862.2000.10634878
https://doi.org/10.2135/cropsci1997.0011183X003700020013x
https://doi.org/10.1007/s10681-007-9600-6

ge_acv 91

See Also

ammi_indexes(), anova_ind(), anova_joint(), ecovalence(), Fox(), gai(), gamem(), gafem(),
ge_acv(), ge_polar() ge_means(), ge_reg(), mgidi(), mtsi(), mps(), mtmps(), performs_ammi(),
blup_indexes(), Shukla(), superiority(), waas(), waasb()

Examples

library(metan)

#################### WAASB index #####################
Fitting the WAAS index
AMMI <- waasb(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = c(PH, ED, TKW, NKR))

Getting the weighted average of absolute scores
gmd(AMMI, what = "WAASB")

#################### BLUP model #####################
Fitting a mixed-effect model
Genotype and interaction as random
blup <- gamem_met(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = c(PH, ED))

Getting p-values for likelihood-ratio test
gmd(blup, what = "lrt")

Getting the variance components
gmd(blup, what = "vcomp")

ge_acv Adjusted Coefficient of Variation as yield stability index

Description

[Stable]

Performs a stability analysis based on the scale-adjusted coefficient of variation (Doring and Reck-
ling, 2018). For more details see acv()

92 ge_acv

Usage

ge_acv(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes and
response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class ge_acv, which is a list containing the results for each variable used in the argu-
ment resp. For each variable, a tibble with the following columns is returned.

• GEN the genotype’s code.

• ACV The adjusted coefficient of variation

• ACV_R The rank for the ACV value.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting
the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Examples

library(metan)
out <- ge_acv(data_ge2, ENV, GEN, c(EH, PH, EL, CD, ED, NKE))
gmd(out)

https://doi.org/10.1016/j.eja.2018.06.007

ge_cluster 93

ge_cluster Cluster genotypes or environments

Description

[Stable]
Performs clustering for genotypes or tester environments based on a dissimilarity matrix.

Usage

ge_cluster(
.data,
env = NULL,
gen = NULL,
resp = NULL,
table = FALSE,
distmethod = "euclidean",
clustmethod = "ward.D",
scale = TRUE,
cluster = "env",
nclust = NULL

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes and the
response variable. It is also possible to use a two-way table with genotypes in
lines and environments in columns as input. In this case you must use table =
TRUE.

env The name of the column that contains the levels of the environments. Defaults
to NULL, in case of the input data is a two-way table.

gen The name of the column that contains the levels of the genotypes. Defaults to
NULL, in case of the input data is a two-way table.

resp The response variable(s). Defaults to NULL, in case of the input data is a two-way
table.

table Logical values indicating if the input data is a two-way table with genotypes in
the rows and environments in the columns. Defaults to FALSE.

distmethod The distance measure to be used. This must be one of 'euclidean', 'maximum',
'manhattan', 'canberra', 'binary', or 'minkowski'.

clustmethod The agglomeration method to be used. This should be one of 'ward.D' (De-
fault), 'ward.D2', 'single', 'complete', 'average' (= UPGMA), 'mcquitty'
(= WPGMA), 'median' (= WPGMC) or 'centroid' (= UPGMC).

scale Should the data be scaled befor computing the distances? Set to TRUE. Let
Yij be the yield of Hybrid i in Location j, Ȳ.j be the mean yield, and Sj be the
standard deviation of Location j. The standardized yield (Zij) is computed as
(Ouyang et al. 1995): Zij = (Yij − Y.j)/Sj .

94 ge_cluster

cluster What should be clustered? Defaults to cluster = "env" (cluster environments).
To cluster the genotypes use cluster = "gen".

nclust The number of clust to be formed. Set to NULL.

Value

• data The data that was used to compute the distances.

• cutpoint The cutpoint of the dendrogram according to Mojena (1977).

• distance The matrix with the distances.

• de The distances in an object of class dist.

• hc The hierarchical clustering.

• cophenetic The cophenetic correlation coefficient between distance matrix and cophenetic
matrix

• Sqt The total sum of squares.

• tab A table with the clusters and similarity.

• clusters The sum of square and the mean of the clusters for each genotype (if cluster =
"env" or environment (if cluster = "gen").

• labclust The labels of genotypes/environments within each cluster.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Mojena, R. 2015. Hierarchical grouping methods and stopping rules: an evaluation. Comput. J.
20:359-363. doi:10.1093/comjnl/20.4.359

Ouyang, Z., R.P. Mowers, A. Jensen, S. Wang, and S. Zheng. 1995. Cluster analysis for geno-
type x environment interaction with unbalanced data. Crop Sci. 35:1300-1305. doi:10.2135/
cropsci1995.0011183X003500050008x

Examples

library(metan)

d1 <- ge_cluster(data_ge, ENV, GEN, GY, nclust = 3)
plot(d1, nclust = 3)

https://doi.org/10.1093/comjnl/20.4.359
https://doi.org/10.2135/cropsci1995.0011183X003500050008x
https://doi.org/10.2135/cropsci1995.0011183X003500050008x

ge_details 95

ge_details Details for genotype-environment trials

Description

[Stable]
Provide details for genotype-environment trials

Usage

ge_details(.data, env, gen, resp)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

Value

A tibble with the following results for each variable:

• Mean: The grand mean.

• SE: The standard error of the mean.

• SD: The standard deviation.

• CV: The coefficient of variation.
• Min,Max: The minimum and maximum value, indicating the genotype and environment of

occurence.
• MinENV, MinGEN: The environment and genotype with the lower mean.
• MaxENV, MaxGEN: The environment and genotype with the higher mean.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
details <- ge_details(data_ge2, ENV, GEN, everything())
print(details)

96 ge_effects

ge_effects Genotype-environment effects

Description

[Stable]

This is a helper function that computes the genotype-environment effects, i.e., the residual effect of
the additive model

Usage

ge_effects(.data, env, gen, resp, type = "ge", verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments. The anal-
ysis of variance is computed for each level of this factor.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

type The type of effect to compute. Defaults to "ge", i.e., genotype-environment. To
compute genotype plus genotype-environment effects use type = "gge".

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

A list where each element is the result for one variable that contains a two-way table with genotypes
in rows and environments in columns.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
ge_eff <- ge_effects(data_ge, ENV, GEN, GY)
gge_eff <- ge_effects(data_ge, ENV, GEN, GY, type = "gge")
plot(ge_eff)

ge_factanal 97

ge_factanal Stability analysis and environment stratification

Description

[Stable]
This function computes the stability analysis and environmental stratification using factor analysis
as proposed by Murakami and Cruz (2004).

Usage

ge_factanal(.data, env, gen, rep, resp, mineval = 1, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

mineval The minimum value so that an eigenvector is retained in the factor analysis.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class ge_factanal with the following items:

• data: The data used to compute the factor analysis.

• cormat: The correlation matrix among the environments.

• PCA: The eigenvalues and explained variance.

• FA: The factor analysis.

• env_strat: The environmental stratification.

• KMO: The result for the Kaiser-Meyer-Olkin test.

• MSA: The measure of sampling adequacy for individual variable.

• communalities: The communalities.

• communalities.mean: The communalities’ mean.

• initial.loadings: The initial loadings.

• finish.loadings: The final loadings after varimax rotation.

• canonical.loadings: The canonical loadings.

• scores.gen: The scores for genotypes for the first and second factors.

98 ge_means

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Murakami, D.M.D., and C.D.C. Cruz. 2004. Proposal of methodologies for environment stratifica-
tion and analysis of genotype adaptability. Crop Breed. Appl. Biotechnol. 4:7-11.

See Also

superiority(), ecovalence(), ge_stats(), ge_reg()

Examples

library(metan)
model <- ge_factanal(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

ge_means Genotype-environment means

Description

[Stable]

Computes genotype-environment interaction means

Usage

ge_means(.data, env, gen, resp)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, and the
response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables at once, a vector of vari-
ables may be used. For example resp = c(var1, var2, var3). Select helpers
are also allowed.

ge_plot 99

Value

A list where each element is the result for one variable containing:

• ge_means: A two-way table with the means for genotypes (rows) and environments (columns).

• gen_means: A tibble with the means for genotypes.

• env_means: A tibble with the means for environments.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
means_ge <- ge_means(data_ge, ENV, GEN, resp = everything())

Genotype-environment interaction means
get_model_data(means_ge)

Environment means
get_model_data(means_ge, what = "env_means")

Genotype means
get_model_data(means_ge, what = "gen_means")

ge_plot Graphical analysis of genotype-vs-environment interaction

Description

[Stable]
This function produces a line plot for a graphical interpretation of the genotype-vs-environment
interaction. By default, environments are in the x axis whereas the genotypes are depicted by
different lines. The y axis contains the value of the selected variable. A heatmap can also be
created.

Usage

ge_plot(
.data,
env,
gen,
resp,
type = 1,

100 ge_plot

values = TRUE,
text_col_pos = c("top", "bottom"),
text_row_pos = c("left", "right"),
average = TRUE,
row_col = TRUE,
row_col_type = c("average", "sum"),
order_g = NULL,
order_e = NULL,
xlab = NULL,
ylab = NULL,
width_bar = 1.5,
heigth_bar = 15,
plot_theme = theme_metan(),
colour = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments

gen The name of the column that contains the levels of the genotypes.

resp The response variable.

type The type of plot type = 1 for a heatmap or type = 2 for a line plot.

values Show the values in the plot? Defaults to TRUE.
text_row_pos, text_col_pos

The position of the text in the rows and columns. The defaults show the text at
left and top.

average Show the average values for environments and genotypes? Defaults to TRUE.
row_col, row_col_type

Shows row/column and defines what to show. Defaults to ’average’.
order_g, order_e

A charactere vector indicating the order of the levels for genotypes and environ-
ments, respectively. This can be used to change the default ordering of rows and
columns.

xlab, ylab The labels for x and y axis, respectively.
width_bar, heigth_bar

The width and heigth of the legend bar, respectively.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details,see ggplot2::theme().

colour Logical argument. If FALSE then the plot will not be colored.

Value

An object of class gg, ggplot.

ge_polar 101

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
ge_plot(data_ge2, ENV, GEN, PH)
ge_plot(data_ge, ENV, GEN, GY, type = 2)

ge_polar Power Law Residuals as yield stability index

Description

[Stable]
Performs a stability analysis based on the Power Law Residuals (POLAR) statistics (Doring et al.,
2015). POLAR is the residuals from the linear regression of log(σ2) against log(µ) and can be
used as a measure of crop stability with lower stability (relative to all samples with that mean yield)
indicated by more positive POLAR values, and higher stability (relative to all samples with that
mean yield) indicated by more negative POLAR values.

Usage

ge_polar(.data, env, gen, resp, base = 10, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes and
response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

base The base with respect to which logarithms are computed. Defaults to 10.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class ge_acv, which is a list containing the results for each variable used in the argu-
ment resp. For each variable, a tibble with the following columns is returned.

• GEN the genotype’s code.

• POLAR The Power Law Residuals

• POLAR_R The rank for the ACV value.

102 ge_reg

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor’s power law and the stability of crop yields.
F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

Examples

library(metan)
out <- ge_polar(data_ge2, ENV, GEN, c(EH, PH, EL, CD, ED, NKE))
gmd(out)

ge_reg Eberhart and Russell’s regression model

Description

[Stable]

Regression-based stability analysis using the Eberhart and Russell (1966) model.

Usage

ge_reg(.data, env, gen, rep, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

https://doi.org/10.1016/j.fcr.2015.08.005

ge_stats 103

Value

An object of class ge_reg with the folloing items for each variable:

• data: The data with means for genotype and environment combinations and the environment
index

• anova: The analysis of variance for the regression model.

• regression: A data frame with the following columns: GEN, the genotypes; b0 and b1 the
intercept and slope of the regression, respectively; t(b1=1) the calculated t-value; pval_t the
p-value for the t test; s2di the deviations from the regression (stability parameter); F(s2di=0)
the F-test for the deviations; pval_f the p-value for the F test; RMSE the root-mean-square
error; R2 the determination coefficient of the regression.

• b0_variance: The variance of b0.

• b1_variance: The variance of b1.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci.
6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

See Also

superiority(), ecovalence(), ge_stats()

Examples

library(metan)
reg <- ge_reg(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

plot(reg)

ge_stats Parametric and non-parametric stability statistics

Description

[Stable]
ge_stats() computes parametric and non-parametric stability statistics given a data set with envi-
ronment, genotype, and block factors.

https://doi.org/10.2135/cropsci1966.0011183X000600010011x

104 ge_stats

Usage

ge_stats(.data, env, gen, rep, resp, verbose = TRUE, prob = 0.05)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

prob The probability error assumed.

Details

The function computes the statistics and ranks for the following stability indexes.

• "Y" (Response variable),

• "CV" (coefficient of variation)

• "ACV" (adjusted coefficient of variation calling ge_acv() internally)

• POLAR (Power Law Residuals, calling ge_polar() internally)

• "Var" (Genotype’s variance)

• "Shukla" (Shukla’s variance, calling Shukla() internally)
• "Wi_g", "Wi_f", "Wi_u" (Annichiarrico’s genotypic confidence index for all, favorable and

unfavorable environments, respectively, calling Annicchiarico() internally)

• "Ecoval" (Wricke’s ecovalence, ecovalence() internally)

• "Sij" (Deviations from the joint-regression analysis) and "R2" (R-squared from the joint-
regression analysis, calling ge_reg() internally)

• "ASTAB" (AMMI Based Stability Parameter), "ASI" (AMMI Stability Index), "ASV" (AMMI-
stability value), "AVAMGE" (Sum Across Environments of Absolute Value of GEI Modelled
by AMMI), "Da" (Annicchiarico’s D Parameter values), "Dz" (Zhang’s D Parameter), "EV"
(Sums of the Averages of the Squared Eigenvector Values), "FA" (Stability Measure Based
on Fitted AMMI Model), "MASV" (Modified AMMI Stability Value), "SIPC" (Sums of the
Absolute Value of the IPC Scores), "Za" (Absolute Value of the Relative Contribution of IPCs
to the Interaction), "WAAS" (Weighted average of absolute scores), calling ammi_indexes()
internally

• "HMGV" (Harmonic mean of the genotypic value), "RPGV" (Relative performance of the geno-
typic values), "HMRPGV" (Harmonic mean of the relative performance of the genotypic values),
by calling blup_indexes() internally

• "Pi_a", "Pi_f", "Pi_u" (Superiority indexes for all, favorable and unfavorable environ-
ments, respectively, calling superiority() internally)

ge_stats 105

• "Gai" (Geometric adaptability index, calling gai() internally)

• "S1" (mean of the absolute rank differences of a genotype over the n environments), "S2"
(variance among the ranks over the k environments), "S3" (sum of the absolute deviations),
"S6" (relative sum of squares of rank for each genotype), by calling Huehn() internally

• "N1", "N2", "N3", "N4" (Thennarasu"s statistics, calling Thennarasu() internally).

Value

An object of class ge_stats which is a list with one data frame for each variable containing the
computed indexes.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern
Italy. Journal of Genetic & Breeding, 46:269-278

Ajay BC, Aravind J, Abdul Fiyaz R, Bera SK, Kumar N, Gangadhar K, Kona P (2018). “Modified
AMMI Stability Index (MASI) for stability analysis.” ICAR-DGR Newsletter, 18, 4–5.

Ajay BC, Aravind J, Fiyaz RA, Kumar N, Lal C, Gangadhar K, Kona P, Dagla MC, Bera SK
(2019). “Rectification of modified AMMI stability value (MASV).” Indian Journal of Genetics and
Plant Breeding (The), 79, 726–731. https://www.isgpb.org/article/rectification-of-modified-ammi-
stability-value-masv.

Annicchiarico P (1997). “Joint regression vs AMMI analysis of genotype-environment interactions
for cereals in Italy.” Euphytica, 94(1), 53–62. doi:10.1023/A:1002954824178

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting
the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor’s power law and the stability of crop yields.
F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci.
6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Farshadfar E (2008) Incorporation of AMMI stability value and grain yield in a single non-parametric
index (GSI) in bread wheat. Pakistan J Biol Sci 11:1791–1796. doi:10.3923/pjbs.2008.1791.1796

Fox, P.N., B. Skovmand, B.K. Thompson, H.J. Braun, and R. Cormier. 1990. Yield and adaptation
of hexaploid spring triticale. Euphytica 47:57-64. doi:10.1007/BF00040364.

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Jambhulkar NN, Rath NC, Bose LK, Subudhi HN, Biswajit M, Lipi D, Meher J (2017). “Stability
analysis for grain yield in rice in demonstrations conducted during rabi season in India.” Oryza,
54(2), 236–240. doi:10.5958/22495266.2017.00030.3

Kang, M.S., and H.N. Pham. 1991. Simultaneous Selection for High Yielding and Stable Crop
Genotypes. Agron. J. 83:161. doi:10.2134/agronj1991.00021962008300010037x

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x
location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

https://doi.org/10.1023/A%3A1002954824178
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.1016/j.fcr.2015.08.005
https://doi.org/10.2135/cropsci1966.0011183X000600010011x
https://doi.org/10.3923/pjbs.2008.1791.1796
https://doi.org/10.1007/BF00040364
https://doi.org/10.5958/2249-5266.2017.00030.3
https://doi.org/10.2134/agronj1991.00021962008300010037x
https://doi.org/10.4141/cjps88-018

106 ge_winners

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a.
Mean performance and stability in multi-environment trials I: Combining features of AMMI and
BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for
selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3),
419-432. doi:10.1007/s1068100796006

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of
variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

Raju BMK (2002). “A study on AMMI model and its biplots.” Journal of the Indian Society of
Agricultural Statistics, 55(3), 297–322.

Rao AR, Prabhakaran VT (2005). “Use of AMMI in simultaneous selection of genotypes for yield
and stability.” Journal of the Indian Society of Agricultural Statistics, 59, 76–82.

Sneller CH, Kilgore-Norquest L, Dombek D (1997). “Repeatability of yield stability statistics in
soybean.” Crop Science, 37(2), 383–390. doi:10.2135/cropsci1997.0011183X003700020013x

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment
interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg
52:127-138.

See Also

acv(), ammi_indexes(), ecovalence(), Fox(), gai(), ge_reg(), hmgv(), hmrpgv(), rpgv(),
Huehn(), ge_polar(), Shukla(), superiority(), Thennarasu(), waas(), waasb()

Examples

library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
get_model_data(model, "stats")

ge_winners Genotype-environment winners

Description

[Stable]

Computes the ranking for genotypes within environments and return the winners.

Usage

ge_winners(.data, env, gen, resp, type = "winners", better = NULL)

https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.1038/hdy.1972.87
https://doi.org/10.2135/cropsci1997.0011183X003700020013x

ge_winners 107

Arguments

.data The dataset containing the columns related to Environments, Genotypes, and the
response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

type The type of results. Defaults to "winners" (default), i.e., a two-way table with
the winner genotype in each environment. If type = "ranks" return the geno-
type ranking within each environment.

better A vector of the same length of the number of variables to rank the genotypes
according to the response variable. Each element of the vector must be one of
the 'h' or 'l'. If 'h' is used (default), the genotypes are ranked from maximum
to minimum. If 'l' is used then the are ranked from minimum to maximum.
Use a comma-separated vector of names. For example, better = c("h, h, h,
h, l"), for ranking the fifth variable from minimum to maximum.

Value

A tibble with two-way table with the winner genotype in each environment (default) or the genotype
ranking for each environment (if type = "ranks").

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
ge_winners(data_ge, ENV, GEN, resp = everything())

Assuming that for 'GY' lower values are better.
ge_winners(data_ge, ENV, GEN,

resp = everything(),
better = c("l, h"))

Show the genotype ranking for each environment
ge_winners(data_ge, ENV, GEN,

resp = everything(),
type = "ranks")

108 gge

gge Genotype plus genotype-by-environment model

Description

[Stable]
Produces genotype plus genotype-by-environment model based on a multi-environment trial dataset
containing at least the columns for genotypes, environments and one response variable or a two-way
table.

Usage

gge(
.data,
env,
gen,
resp,
centering = "environment",
scaling = "none",
svp = "environment",
by = NULL,
...

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes and the
response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also supported.

centering The centering method. Must be one of the 'none | 0', for no centering; 'global
| 1', for global centered (E+G+GE); 'environment | 2' (default), for environment-
centered (G+GE); or 'double | 3', for double centered (GE). A biplot cannot
be produced with models produced without centering.

scaling The scaling method. Must be one of the 'none | 0' (default), for no scaling;
or 'sd | 1', where each value is divided by the standard deviation of its cor-
responding environment (column). This will put all environments roughly he
same rang of values.

svp The method for singular value partitioning. Must be one of the 'genotype |
1', (The singular value is entirely partitioned into the genotype eigenvectors,
also called row metric preserving); 'environment | 2', default, (The singu-
lar value is entirely partitioned into the environment eigenvectors, also called

gge 109

column metric preserving); or 'symmetrical | 3' (The singular value is sym-
metrically partitioned into the genotype and the environment eigenvectors This
SVP is most often used in AMMI analysis and other biplot analysis, but it is not
ideal for visualizing either the relationship among genotypes or that among the
environments).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to produce GGE bi-
plots for each level of a categorical variable. In this case, an object of class
gge_grouped is returned.

... Arguments passed to the function impute_missing_val() for imputation of
missing values in case of unbalanced data.

Value

The function returns a list of class gge containing the following objects

• coordgen The coordinates for genotypes for all components.

• coordenv The coordinates for environments for all components.

• eigenvalues The vector of eigenvalues.

• totalvar The overall variance.

• labelgen The name of the genotypes.

• labelenv The names of the environments.

• labelaxes The axes labels.

• ge_mat The data used to produce the model (scaled and centered).

• centering The centering method.

• scaling The scaling method.

• svp The singular value partitioning method.

• d The factor used to generate in which the ranges of genotypes and environments are compa-
rable when singular value partitioning is set to ’genotype’ or ’environment’.

• grand_mean The grand mean of the trial.

• mean_gen A vector with the means of the genotypes.

• mean_env A vector with the means of the environments.

• scale_var The scaling vector when the scaling method is 'sd'.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and
agronomists. CRC Press.

110 gtb

Examples

library(metan)
mod <- gge(data_ge, ENV, GEN, GY)
plot(mod)

GGE model for all numeric variables
mod2 <- gge(data_ge2, ENV, GEN, resp = everything())
plot(mod2, var = "ED")

If we have a two-way table with the mean values for
genotypes and environments

table <- make_mat(data_ge, GEN, ENV, GY) %>% round(2)
table
make_long(table) %>%
gge(ENV, GEN, Y) %>%
plot()

gtb Genotype by trait biplot

Description

[Stable]

Produces a genotype-by-trait biplot model. From a genotype by environment by trait three-way
table, genotype-by-trait tables in any single environment, across all environments, or across a subset
of the environments can be generated and visually studied using biplots. The model for biplot
analysis of genotype by trait data is the singular value decomposition of trait-standardized two-way
table.

Usage

gtb(.data, gen, resp, centering = "trait", scaling = "sd", svp = "trait")

Arguments

.data The dataset containing the columns related to Genotypes and the response vari-
able(s).

gen The name of the column that contains the levels of the genotypes.

resp The response variables, i.e., resp = c(var1, var2, var3). Select helpers can
also be used.

centering The centering method. Must be one of the 'none | 0', for no centering; 'global
| 1', for global centered (T+G+GT); 'trait | 2' (default), for trait-centered
(G+GT); or 'double | 3', for double centred (GT). A biplot cannot be pro-
duced with models produced without centering.

gtb 111

scaling The scaling method. Must be one of the 'none | 0', for no scaling; or 'sd |
1' (default), where each value is divided by the standard deviation of its corre-
sponding trait (column). This will put all traits roughly he same rang of values.

svp The method for singular value partitioning. Must be one of the 'genotype | 1',
(The singular value is entirely partitioned into the genotype eigenvectors, also
called row metric preserving); 'trait | 2', default, (The singular value is en-
tirely partitioned into the trait eigenvectors, also called column metric preserv-
ing); or 'symmetrical | 3' (The singular value is symmetrically partitioned
into the genotype and the trait eigenvectors This SVP is most often used in
AMMI analysis and other biplot analysis, but it is not ideal for visualizing either
the relationship among genotypes or that among the traits).

Value

The function returns a list of class gge that is compatible with the function plot() used in gge().

• coordgen The coordinates for genotypes for all components.

• coordenv The coordinates for traits for all components.

• eigenvalues The vector of eigenvalues.

• totalvar The overall variance.

• labelgen The name of the genotypes.

• labelenv The names of the traits.

• labelaxes The axes labels.

• gt_mat The data used to produce the model (scaled and centered).

• centering The centering method.

• scaling The scaling method.

• svp The singular value partitioning method.

• d The factor used to generate in which the ranges of genotypes and traits are comparable when
singular value partitioning is set to ’genotype’ or ’trait’.

• grand_mean The grand mean of the trial.

• mean_gen A vector with the means of the genotypes.

• mean_env A vector with the means of the traits.

• scale_var The scaling vector when the scaling method is 'sd'.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and
agronomists. CRC Press.

112 gytb

Examples

library(metan)
GT biplot for all numeric variables
mod <- gtb(data_ge2, GEN, resp = contains("E"))
plot(mod)

gytb Genotype by yield*trait biplot

Description

[Stable]
Produces a Genotype by Yield*Trait biplot (GTY) proposed by Yan and Fregeau-Reid (2018).

Usage

gytb(
.data,
gen,
yield,
traits = everything(),
ideotype = NULL,
weight = NULL,
prefix = "Y",
centering = "trait",
scaling = "sd",
svp = "trait"

)

Arguments

.data The dataset containing the columns related to Genotypes, Yield, and Traits.

gen The name of the column that contains the levels of the genotypes.

yield The column containing the yield values.

traits The column(s) with the traits values. Defaults to NULL. In this case, all numeric
traits in .data, except that in yield are selected. To select specific traits from
.data, use a list of unquoted comma-separated variable names (e.g. traits =
c(var1, var2, var3)), an specific range of variables, (e.g. traits = c(var1:var3)),
or even a select helper like starts_with("N").

ideotype A vector of "h" or "l" with the same length of traits to define which trait is
desired to increase or decrease. By default (ideotype = NULL) for all numeric
traits in traits are assumed that high values is desirable. Following the order
of the traits selected in traits, use "h" to indicate the traits in which higher

gytb 113

values are desired or "l" to indicate the variables in which lower values are
desired. Then, yield will be multiplied by traits with "h" and divided by traits
with "l" to generate the Genotype by yield*trait table. For example, ideotype
= c("h, h, l") will assume that the ideotype has higher values for the first two
traits and lower values for the last trait.

weight The weight assumed for each trait. Similar to ideotype argument, provide a
numeric vector of the same length of traits. Suggested values are between 0
and 2.

prefix The prefix used in the biplot for the yield*trait combinations. Defaults to "Y".

centering The centering method. Must be one of the 'none | 0', for no centering; 'global
| 1', for global centered (T+G+GYT); 'trait | 2' (default), for trait-centered
(G+GYT); or 'double | 3', for double centered (GYT). A biplot cannot be pro-
duced with models produced without centering.

scaling The scaling method. Must be one of the 'none | 0', for no scaling; or 'sd | 1'
(default), so that the mean for each trait or yield-trait combination becomes 0
and the variance becomes unit.

svp The method for singular value partitioning. Must be one of the 'genotype | 1',
(The singular value is entirely partitioned into the genotype eigenvectors, also
called row metric preserving); 'trait | 2', default, (The singular value is en-
tirely partitioned into the trait eigenvectors, also called column metric preserv-
ing); or 'symmetrical | 3' (The singular value is symmetrically partitioned
into the genotype and the trait eigenvectors This SVP is most often used in
AMMI analysis and other biplot analysis, but it is not ideal for visualizing either
the relationship among genotypes or that among the traits).

Value

The function returns a list of class gge that is compatible with the function plot() used in gge().

• data The Genotype by yield*trait (GYT) data.

• ge_mat The Genotype by yield*trait (GYT) data (scaled and centered).

• coordgen The coordinates for genotypes for all components.

• coordenv The coordinates for traits for all components.

• eigenvalues The vector of eigenvalues.

• totalvar The overall variance.

• labelgen The name of the genotypes.

• labelenv The names of the traits.

• labelaxes The axes labels.

• centering The centering method.

• scaling The scaling method.

• svp The singular value partitioning method.

• d The factor used to generate in which the ranges of genotypes and traits are comparable when
singular value partitioning is set to ’genotype’ or ’trait’.

• grand_mean The grand mean of the trial.

114 Huehn

• mean_gen A vector with the means of the genotypes.
• mean_env A vector with the means of the traits.
• scale_var The scaling vector when the scaling method is 'sd'.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Yan, W., & Fregeau-Reid, J. (2018). Genotype by Yield*Trait (GYT) Biplot: a Novel Approach for
Genotype Selection based on Multiple Traits. Scientific Reports, 8(1), 1-10. doi:10.1038/s41598-
018266888

Examples

library(metan)
GYT biplot for all numeric traits of 'data_g'
KW (kernel weight) considered as 'yield',
mod <- gytb(data_g, GEN, KW)
plot(mod)

Huehn Huehn’s stability statistics

Description

[Stable]
Performs a stability analysis based on Huehn (1979) statistics. The four nonparametric measures
of phenotypic stability are: S1 (mean of the absolute rank differences of a genotype over the n
environments), S2 (variance among the ranks over the k environments), S3 (sum of the absolute
deviations), and S6 (relative sum of squares of rank for each genotype).

Usage

Huehn(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.
gen The name of the column that contains the levels of the genotypes.
resp The response variable(s). To analyze multiple variables in a single procedure

use, for example, resp = c(var1, var2, var3).
verbose Logical argument. If verbose = FALSE the code will run silently.

https://doi.org/10.1038/s41598-018-26688-8
https://doi.org/10.1038/s41598-018-26688-8

impute_missing_val 115

Value

An object of class Huehn, which is a list containing the results for each variable used in the argument
resp. For each variable, a tibble with the following columns is returned.

• GEN The genotype’s code.

• Y The mean for the response variable.

• S1 Mean of the absolute rank differences of a genotype over the n environments.

• S2 variance among the ranks over the k environments.

• S3 Sum of the absolute deviations.

• S6 Relative sum of squares of rank for each genotype.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Examples

library(metan)
out <- Huehn(data_ge2, ENV, GEN, PH)
print(out)

impute_missing_val Missing value imputation

Description

[Stable]
Impute the missing entries of a matrix with missing values using different algorithms. See Details
section for more details

Usage

impute_missing_val(
.data,
naxis = 1,
algorithm = "EM-SVD",
tol = 1e-10,
max_iter = 1000,
simplified = FALSE,
verbose = TRUE

)

116 impute_missing_val

Arguments

.data A matrix to impute the missing entries. Frequently a two-way table of genotype
means in each environment.

naxis The rank of the Singular Value Approximation. Defaults to 1.

algorithm The algorithm to impute missing values. Defaults to "EM-SVD". Other possible
values are "EM-AMMI" and "colmeans". See Details section.

tol The convergence tolerance for the algorithm.

max_iter The maximum number of steps to take. If max_iter is achieved without con-
vergence, the algorithm will stop with a warning.

simplified Valid argument when algorithm = "EM-AMMI". IF FALSE (default), the current
effects of rows and columns change from iteration to iteration. If TRUE, the
general mean and effects of rows and columns are computed in the first iteration
only, and in next iterations uses these values.

verbose Logical argument. If verbose = FALSE the code will run silently.

Details

EM-AMMI algorithm
The EM-AMMI algorithm completes a data set with missing values according to both main and inter-
action effects. The algorithm works as follows (Gauch and Zobel, 1990):

1. The initial values are calculated as the grand mean increased by main effects of rows and main
effects of columns. That way, the matrix of observations is pre-filled in.

2. The parameters of the AMMI model are estimated.

3. The adjusted means are calculated based on the AMMI model with naxis principal compo-
nents.

4. The missing cells are filled with the adjusted means.

5. The root mean square error of the predicted values (RMSE_p) is calculated with the two lasts
iteration steps. If RMSE_p > tol, the steps 2 through 5 are repeated. Declare convergence if
RMSE_p < tol. If max_iter is achieved without convergence, the algorithm will stop with a
warning.

EM-SVD algorithm
The EM-SVD algorithm impute the missing entries using a low-rank Singular Value Decomposition
approximation estimated by the Expectation-Maximization algorithm. The algorithm works as fol-
lows (Troyanskaya et al., 2001).

1. Initialize all NA values to the column means.

2. Compute the first naxis terms of the SVD of the completed matrix

3. Replace the previously missing values with their approximations from the SVD

4. The root mean square error of the predicted values (RMSE_p) is calculated with the two lasts
iteration steps. If RMSE_p > tol, the steps 2 through 3 are repeated. Declare convergence if
RMSE_p < tol. If max_iter is achieved without convergence, the algorithm will stop with a
warning.

inspect 117

colmeans algorithm

The colmeans algorithm simply impute the missing entires using the column mean of the respective
entire. Thus, there is no iteractive process.

Value

An object of class imv with the following values:

• .data The imputed matrix

• pc_ss The sum of squares representing variation explained by the principal components

• iter The final number of iterations.

• Final_RMSE The maximum change of the estimated values for missing cells in the last step
of iteration.

• final_axis The final number of principal component axis.

• convergence Logical value indicating whether the modern converged.

References

Gauch, H. G., & Zobel, R. W. (1990). Imputing missing yield trial data. Theoretical and Applied
Genetics, 79(6), 753-761. doi:10.1007/BF00224240

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., . Altman, R. B.
(2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525.

Examples

library(metan)
mat <- (1:20) %*% t(1:10)
mat
10% of missing values at random
miss_mat <- random_na(mat, prop = 10)
miss_mat
mod <- impute_missing_val(miss_mat)
mod$.data

inspect Check for common errors in multi-environment trial data

Description

[Stable]

inspect() scans a data.frame object for errors that may affect the use of functions in metan.
By default, all variables are checked regarding the class (numeric or factor), missing values, and
presence of possible outliers. The function will return a warning if the data looks like unbalanced,
has missing values or possible outliers.

https://doi.org/10.1007/BF00224240

118 inspect

Usage

inspect(.data, ..., plot = FALSE, threshold = 15, verbose = TRUE)

Arguments

.data The data to be analyzed

... The variables in .data to check. If no variable is informed, all the variables in
.data are used.

plot Create a plot to show the check? Defaults to FALSE.

threshold Maximum number of levels allowed in a character / factor column to produce a
plot. Defaults to 15.

verbose Logical argument. If TRUE (default) then the results for checks are shown in the
console.

Value

A tibble with the following variables:

• Variable The name of variable

• Class The class of the variable

• Missing Contains missing values?

• Levels The number of levels of a factor variable

• Valid_n Number of valid n (omit NAs)

• Outlier Contains possible outliers?

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
inspect(data_ge)

Create a toy example with messy data
df <- data_ge2[-c(2, 30, 45, 134), c(1:5)] %>% as.data.frame()
df[c(1, 20, 50), 5] <- NA
df[40, 4] <- "2..814"

inspect(df)

int.effects 119

int.effects Data for examples

Description

Data for examples

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

is.lpcor Coerce to an object of class lpcor

Description

[Stable]

Functions to check if an object is of class lpcor

Usage

is.lpcor(x)

Arguments

x An object to check.

Value

A logical value TRUE or FALSE.

Examples

library(metan)
library(dplyr)
mt_num <- mtcars %>% select_if(., is.numeric)
lpdata <- as.lpcor(cor(mt_num[1:5]),

cor(mt_num[1:5]),
cor(mt_num[2:6]),
cor(mt_num[4:8]))

is.lpcor(lpdata)

120 is_balanced_trial

is_balanced_trial Check if a data set is balanced

Description

Check if a data set coming from multi-environment trials is balanced, i.e., all genotypes are in all
environments.

Usage

is_balanced_trial(.data, env, gen, resp)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable.

Value

A logical value

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

unb <- data_ge %>%
remove_rows(1:3) %>%
droplevels()

is_balanced_trial(data_ge, ENV, GEN, GY)
is_balanced_trial(unb, ENV, GEN, GY)

lineplots 121

lineplots Fast way to create line plots

Description

[Stable]

• plot_lines() Creates a line plot based on one quantitative factor and one numeric variable.
It can be used to show the results of a one-way trial with quantitative treatments.

• plot_factlines() Creates a line plot based on: one categorical and one quantitative fac-
tor and one numeric variable. It can be used to show the results of a two-way trial with
qualitative-quantitative treatment structure.

Usage

plot_lines(
.data,
x,
y,
fit,
level = 0.95,
confidence = TRUE,
xlab = NULL,
ylab = NULL,
n.dodge = 1,
check.overlap = FALSE,
col = "red",
alpha = 0.2,
size.shape = 1.5,
size.line = 1,
size.text = 12,
fontfam = "sans",
plot_theme = theme_metan()

)

plot_factlines(
.data,
x,
y,
group,
fit,
level = 0.95,
confidence = TRUE,
xlab = NULL,
ylab = NULL,
n.dodge = 1,
check.overlap = FALSE,

122 lineplots

legend.position = "bottom",
grid = FALSE,
scales = "free",
col = TRUE,
alpha = 0.2,
size.shape = 1.5,
size.line = 1,
size.text = 12,
fontfam = "sans",
plot_theme = theme_metan()

)

Arguments

.data The data set
x, y The variables to be mapped to the x and y axes, respectively.
fit The polynomial degree to use. It must be between 1 (linear fit) to 4 (fourth-order

polynomial regression.). In plot_factlines(), if fit is a lenth 1 vector, i.e.,
1, the fitted curves of all levels in group will be fitted with polynomial degree
fit. To use a different polynomial degree for each level in group, use a numeric
vector with the same length of the variable in group.

level The fonfidence level. Defaults to 0.05.
confidence Display confidence interval around smooth? (TRUE by default)
xlab, ylab The labels of the axes x and y, respectively. Defaults to NULL.
n.dodge The number of rows that should be used to render the x labels. This is useful for

displaying labels that would otherwise overlap.
check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and

middle labels.
col The colour to be used in the line plot and points.
alpha The alpha for the color in confidence band
size.shape The size for the shape in plot
size.line The size for the line in the plot
size.text The size of the text
fontfam The family of the font text.
plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For

more details, see ggplot2::theme().
group The grouping variable. Valid for plot_factlines() only.
legend.position

Valid argument for plot_factlines. The position of the legend. Defaults to
’bottom’.

grid Valid argument for plot_factlines. Logical argument. If TRUE then a grid
will be created.

scales Valid argument for plot_factlines. If grid = TRUE scales controls how the
scales are in the plot. Possible values are 'free' (default), 'fixed', 'free_x'
or 'free_y'.

lpcor 123

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

plot_bars() and plot_factbars()

Examples

library(metan)
One-way line plot
df1 <- data.frame(group = "A",

x = c(0, 100, 200, 300, 400),
y = c(3.2, 3.3, 4.0, 3.8, 3.4))

plot_lines(df1, x, y, fit = 2)

Two-way line plot
df2 <- data.frame(group = "B",

x = c(0, 100, 200, 300, 400),
y = c(3.2, 3.3, 3.7, 3.9, 4.1))

facts <- rbind(df1, df2)

p1 <- plot_factlines(facts, x, y, group = group, fit = 1)
p2 <- plot_factlines(facts,

x = x,
y = y,
group = group,
fit = c(2, 1),
confidence = FALSE)

arrange_ggplot(p1, p2)

lpcor Linear and Partial Correlation Coefficients

Description

[Stable]

Estimates the linear and partial correlation coefficients using as input a data frame or a correlation
matrix.

Usage

lpcor(.data, ..., by = NULL, n = NULL, method = "pearson")

124 lpcor

Arguments

.data The data to be analyzed. It must be a symmetric correlation matrix or a data
frame, possible with grouped data passed from dplyr::group_by().

... Variables to use in the correlation. If ... is null (Default) then all the numeric
variables from .data are used. It must be a single variable name or a comma-
separated list of unquoted variables names.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

n If a correlation matrix is provided, then n is the number of objects used to com-
pute the correlation coefficients.

method a character string indicating which correlation coefficient is to be computed.
One of ’pearson’ (default), ’kendall’, or ’spearman’.

Value

If .data is a grouped data passed from dplyr::group_by() then the results will be returned into a
list-column of data frames, containing:

• linear.mat The matrix of linear correlation.

• partial.mat The matrix of partial correlations.

• results Hypothesis testing for each pairwise comparison.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
partial1 <- lpcor(iris)

Alternatively using the pipe operator %>%
partial2 <- iris %>% lpcor()

Using a correlation matrix
partial3 <- cor(iris[1:4]) %>%

lpcor(n = nrow(iris))

Select all numeric variables and compute the partial correlation
For each level of Species

partial4 <- lpcor(iris, by = Species)

mahala 125

mahala Mahalanobis Distance

Description

[Stable]
Compute the Mahalanobis distance of all pairwise rows in .means. The result is a symmetric matrix
containing the distances that may be used for hierarchical clustering.

Usage

mahala(.means, covar, inverted = FALSE)

Arguments

.means A matrix of data with, say, p columns.
covar The covariance matrix.
inverted Logical argument. If TRUE, covar is supposed to contain the inverse of the

covariance matrix.

Value

A symmetric matrix with the Mahalanobis’ distance.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
library(dplyr)
Compute the mean for genotypes
means <- mean_by(data_ge, GEN) %>%

column_to_rownames("GEN")

Compute the covariance matrix
covmat <- cov(means)

Compute the distance
dist <- mahala(means, covmat)

Dendrogram
dend <- dist %>%

as.dist() %>%
hclust() %>%
as.dendrogram()

plot(dend)

126 mahala_design

mahala_design Mahalanobis distance from designed experiments

Description

[Stable]

Compute the Mahalanobis distance using data from an experiment conducted in a randomized com-
plete block design or completely randomized design.

Usage

mahala_design(
.data,
gen,
rep,
resp,
design = "RCBD",
by = NULL,
return = "distance"

)

Arguments

.data The dataset containing the columns related to Genotypes, replication/block and
response variables, possible with grouped data passed from dplyr::group_by().

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variables. For example resp = c(var1, var2, var3).

design The experimental design. Must be RCBD or CRD.

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

return What the function return? Default is ’distance’, i.e., the Mahalanobis distance.
Alternatively, it is possible to return the matrix of means return = 'means', or
the variance-covariance matrix of residuals return = 'covmat'.

Value

A symmetric matrix with the Mahalanobis’ distance. If .data is a grouped data passed from
dplyr::group_by() then the results will be returned into a list-column of data frames.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

make_long 127

Examples

library(metan)
maha <- mahala_design(data_g,

gen = GEN,
rep = REP,
resp = everything(),
return = "covmat")

Compute one distance for each environment (all numeric variables)
maha_group <- mahala_design(data_ge,

gen = GEN,
rep = REP,
resp = everything(),
by = ENV)

Return the variance-covariance matrix of residuals
cov_mat <- mahala_design(data_ge,

gen = GEN,
rep = REP,
resp = c(GY, HM),
return = 'covmat')

make_long Two-way table to a ’long’ format

Description

[Stable]

Helps users to easily convert a two-way table (genotype vs environment) to a ’long’ format data.
The data in mat will be gathered into three columns. The row names will compose the first column.
The column names will compose the second column and the third column will contain the data that
fills the two-way table.

Usage

make_long(mat, gen_in = "rows")

Arguments

mat A two-way table. It must be a matrix or a data.frame with rownames.

gen_in Where are the genotypes? Defaults to 'rows'. If genotypes are in columns and
environments in rows, set to gen_in = 'cols'.

Value

A tibble with three columns: GEN (genotype), ENV (environment), and Y (response) variable.

128 make_mat

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)

set.seed(1)
mat <- matrix(rnorm(9, 2530, 350), ncol = 3)
colnames(mat) <- paste("E", 1:3, sep = "")
rownames(mat) <- paste("G", 1:3, sep = "")

make_long(mat)

gen_cols <- t(mat)
make_long(gen_cols, gen_in = "cols")

make_mat Make a two-way table

Description

[Stable]
This function help users to easily make a two-way table from a "long format" data.

Usage

make_mat(.data, row, col, value, fun = mean)

Arguments

.data The dataset. Must contains at least two categorical columns.
row The column of data in which the mean of each level will correspond to one line

in the output.
col The column of data in which the mean of each level will correspond to one

column in the output.
value The column of data that contains the values to fill the two-way table.
fun The function to apply. Defaults to mean, i.e., the two-way table will show the

mean values for each genotype-environment combination. Other R base func-
tions such as max, min, sd, var, or an own function that return a single numeric
value can be used.

Value

A two-way table with the argument row in the rows, col in the columns, filled by the argument
value.

mantel_test 129

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
matrix <- data_ge %>% make_mat(row = GEN, col = ENV, val = GY)
matrix

standart error of mean

data_ge %>% make_mat(GEN, ENV, GY, sem)

mantel_test Mantel test

Description

[Stable]
Performs a Mantel test between two correlation/distance matrices. The function calculates the cor-
relation between two matrices, the Z-score that is is the sum of the products of the corresponding
elements of the matrices and a two-tailed p-value (null hypothesis:

r = 0

).

Usage

mantel_test(mat1, mat2, nboot = 1000, plot = FALSE)

Arguments

mat1, mat2 A correlation matrix or an object of class dist.

nboot The number of permutations to be used. Defaults to 1000.

plot if plot = TRUE, plots the density estimate of the permutation distribution along
with the observed Z-score as a vertical line.

Value

• mantel_r The correlation between the two matrices.

• z_score The Z-score.

• p-value The quantile of the observed Z-score. in the permutation distribution.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

130 metan

See Also

pairs_mantel()

Examples

library(metan)
Test if the correlation of traits (data_ge2 dataset)
changes between A1 and A2 levels of factor ENV
A1 <- corr_coef(data_ge2 %>% subset(ENV == "A1"))[["cor"]]
A2 <- corr_coef(data_ge2 %>% subset(ENV == "A2"))[["cor"]]
mantel_test(A1, A2, plot = TRUE)

meansGxE Data for examples

Description

This dataset contains the means for grain yield of 10 genotypes cultivated in 5 environments. The
interaction effects for this data is found in int.effects()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

metan Multi-Environment Trial Analysis

Description

metan provides functions for performing the most used analyses in the evaluation of multi-environment
trials, including, but not limited to:

• ANOVA-based stability statistics;

• AMMI-based stability indexes;

• BLUP-based stability indexes;

• Cross-validation procedures for AMMI-family and BLUP models;

• GGE biplot analysis;

• Estimation using AMMI considering different numbers of interaction principal component
axes;

• Graphics tools for generating biplots;

• Nonparametric stability statistics;

mgidi 131

• Variance components and genetic parameters in mixed-effect models;

• Within-environment analysis of variance;

metan also provides functions for biometrical analysis such as path analysis, canonical correlation,
partial correlation, clustering analysis, as well as tools for summarizing and plotting data.

A complete guide may be found at https://tiagoolivoto.github.io/metan/

mgidi Multitrait Genotype-Ideotype Distance Index

Description

[Stable]

Computes the multi-trait genotype-ideotype distance index, MGIDI, (Olivoto and Nardino, 2020),
used to select genotypes in plant breeding programs based on multiple traits.The MGIDI index is
computed as follows:

MGIDIi =

√√√√ f∑
j=1

(Fij − Fj)2

where MGIDIi is the multi-trait genotype-ideotype distance index for the ith genotype; Fij is the
score of the ith genotype in the jth factor (i = 1, 2, ..., g; j = 1, 2, ..., f), being g and f the number of
genotypes and factors, respectively, and Fj is the jth score of the ideotype. The genotype with the
lowest MGIDI is then closer to the ideotype and therefore should presents desired values for all the
analyzed traits.

Usage

mgidi(
.data,
use_data = "blup",
SI = 15,
mineval = 1,
ideotype = NULL,
weights = NULL,
use = "complete.obs",
verbose = TRUE

)

Arguments

.data An object fitted with the function gafem(), gamem() or a two-way table with
BLUPs for genotypes in each trait (genotypes in rows and traits in columns). In
the last case, the first column is assumed to have the genotype’s name.

https://tiagoolivoto.github.io/metan/

132 mgidi

use_data Define which data to use if .data is an object of class gamem. Defaults to
"blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means
instead BLUPs for computing the index.

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

mineval The minimum value so that an eigenvector is retained in the factor analysis.

ideotype A vector of length nvar where nvar is the number of traits used to plan the ideo-
type. Use 'h' to indicate the traits in which higher values are desired or 'l' to
indicate the traits in which lower values are desired. For example, ideotype =
c("h, h, h, h, l") will consider that the ideotype has higher values for the first
four traits and lower values for the last trait. ALternatively, one can use a mixed
vector, indicating both h/l values and a numeric value for the target trait(s), eg.,
ideotype = c("120, h, 30, h, l"). In this scenario, a numeric value to define
the ideotype is declared for the first and third traits. For this traits, the abso-
lute difference between the observed value and the numeric ideotype will be
computed, and after the rescaling procedure, the genotype with the smallest dif-
ference will have 100. If .datais a model fitted with the functions gafem() or
gamem(), the order of the traits will be the declared in the argument resp in
those functions.

weights Optional weights to assign for each trait in the selection process. It must be
a numeric vector of length equal to the number of traits in .data. By default
(NULL) a numeric vector of weights equal to 1 is used, i.e., all traits have the
same weight in the selection process. It is suggested weights ranging from 0 to
1. The weights will then shrink the ideotype vector toward 0. This is useful, for
example, to prioritize grain yield rather than a plant-related trait in the selection
process.

use The method for computing covariances in the presence of missing values. De-
faults to complete.obs, i.e., missing values are handled by casewise deletion.

verbose If verbose = TRUE (Default) then some results are shown in the console.

Value

An object of class mgidi with the following items:

• data The data used to compute the factor analysis.

• cormat The correlation matrix among the environments.

• PCA The eigenvalues and explained variance.

• FA The factor analysis.

• KMO The result for the Kaiser-Meyer-Olkin test.

• MSA The measure of sampling adequacy for individual variable.

• communalities The communalities.

• communalities_mean The communalities’ mean.

• initial_loadings The initial loadings.

• finish_loadings The final loadings after varimax rotation.

mgidi 133

• canonical_loadings The canonical loadings.

• scores_gen The scores for genotypes in all retained factors.

• scores_ide The scores for the ideotype in all retained factors.

• gen_ide The distance between the scores of each genotype with the ideotype.

• MGIDI The multi-trait genotype-ideotype distance index.

• contri_fac The relative contribution of each factor on the MGIDI value. The lower the con-
tribution of a factor, the close of the ideotype the variables in such factor are.

• contri_fac_rank, contri_fac_rank_sel The rank for the contribution of each factor for all
genotypes and selected genotypes, respectively.

• complementarity The complementarity matrix, which is the Euclidean distance between se-
lected genotypes based on the contribution of each factor on the MGIDI index (waiting refer-
ence).

• sel_dif The selection differential for the variables.

• stat_gain A descriptive statistic for the selection gains. The minimum, mean, confidence
interval, standard deviation, maximum, and sum of selection gain values are computed. If
traits have negative and positive desired gains, the statistics are computed for by strata.

• sel_gen The selected genotypes.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., and Nardino, M. (2020). MGIDI: toward an effective multivariate selection in biological
experiments. Bioinformatics. doi:10.1093/bioinformatics/btaa981

Examples

library(metan)

simulate a data set
10 genotypes
5 replications
4 traits
df <-
g_simula(ngen = 10,

nrep = 5,
nvars = 4,
gen_eff = 35,
seed = c(1, 2, 3, 4))

run a mixed-effect model (genotype as random effect)
mod <-

gamem(df,
gen = GEN,
rep = REP,
resp = everything())

https://doi.org/10.1093/bioinformatics/btaa981

134 mps

BLUPs for genotypes
gmd(mod, "blupg")

Compute the MGIDI index
Default options (all traits with positive desired gains)
Equal weights for all traits
mgidi_ind <- mgidi(mod)
gmd(mgidi_ind, "MGIDI")

Higher weight for traits V1 and V4
This will increase the probability of selecting H7 and H9
30% selection pressure
mgidi_ind2 <-

mgidi(mod,
weights = c(1, .2, .2, 1),
SI = 30)

gmd(mgidi_ind2, "MGIDI")

plot the contribution of each factor on the MGIDI index
p1 <- plot(mgidi_ind, type = "contribution")
p2 <- plot(mgidi_ind2, type = "contribution")
p1 + p2

Negative desired gains for V1
Positive desired gains for V2, V3 and V4
mgidi_ind3 <-

mgidi(mod,
ideotype = c("h, h, h, l"))

Extract the BLUPs for each genotype
(blupsg <- gmd(mod, "blupg"))

Consider the following ideotype that will be close to H4
Define a numeric ideotype for the first three traits, and the lower values
for the last trait
ideotype <- c("129.46, 76.8, 89.7, l")

mgidi_ind4 <-
mgidi(mod,

ideotype = ideotype)

Note how the strenghts of H4 are related to FA1 (V1 and V2)
plot(mgidi_ind4, type = "contribution", genotypes = "all")

mps Mean performance and stability in multi-environment trials

mps 135

Description

[Experimental]

This function implements the weighting method between mean performance and stability (Olivoto
et al., 2019) considering different parametric and non-parametric stability indexes.

Usage

mps(
.data,
env,
gen,
rep,
resp,
block = NULL,
by = NULL,
random = "gen",
performance = c("blupg", "blueg"),
stability = "waasb",
ideotype_mper = NULL,
ideotype_stab = NULL,
wmper = NULL,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then an alpha-lattice design is employed considering
block as random to make use of inter-block information, whereas the complete
replicate effect is always taken as fixed, as no inter-replicate information was to
be recovered (Mohring et al., 2015).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to analyze environ-
ments within mega-environments. In this case, an object of class mps_grouped
is returned.

random The effects of the model assumed to be random. Defaults to random = "gen".
See gamem_met() to see the random effects assumed depending on the experi-
mental design of the trials.

136 mps

performance Wich considers as mean performance. Either blupg (for Best Linear Unbiased
Prediction) or blueg (for Best Linear Unbiased Estimation)

stability The stability method. One of the following:

• "waasb" The weighted average of absolute scores (Olivoto et al. 2019).
• "ecovalence" The Wricke’s ecovalence (Wricke, 1965).
• "Shukla" The Shukla’s stability variance parameter (Shukla, 1972).
• "hmgv" The harmonic mean of genotypic values (Resende, 2007).
• "s2di" The deviations from the Eberhart and Russell regression (Eberhart

and Russell, 1966).
• "r2" The determination coefficient of the Eberhart and Russell regression

(Eberhart and Russell, 1966)..
• "rmse" The root mean squared error of the Eberhart and Russell regression

(Eberhart and Russell, 1966).
• "wi" Annicchiarico’s genotypic confidence index (Annicchiarico, 1992).
• "polar" Power Law Residuals as yield stability index (Doring et al., 2015).
• "acv" Adjusted Coefficient of Variation (Doring and Reckling, 2018)
• "pi" Lin e Binns’ superiority index (Lin and Binns, 1988).
• "gai" Geometric adaptability index (Mohammadi and Amri, 2008).
• "s1", "s2", "s3", and "s6" Huehn’s stability statistics (Huehn, 1979).
• "n1", "n2", "n3", and "n4" Thennarasu’s stability statistics (Then-

narasu, 1995).
• "asv", "ev", "za", and "waas" AMMI-based stability indexes (see
ammi_indexes()).

ideotype_mper, ideotype_stab
The new maximum value after rescaling the response variable/stability index.
By default, all variables in resp are rescaled so that de maximum value is 100
and the minimum value is 0 (i.e., ideotype_mper = NULL and ideotype_stab =
NULL). It must be a character vector of the same length of resp if rescaling is as-
sumed to be different across variables, e.g., if for the first variable smaller values
are better and for the second one, higher values are better, then ideotype_mper
= c("l, h") must be used. For stability index in which lower values are better,
use ideotype_stab = "l". Character value of length 1 will be recycled with a
warning message.

wmper The weight for the mean performance. By default, all variables in resp have
equal weights for mean performance and stability (i.e., wmper = 50). It must be
a numeric vector of the same length of resp to assign different weights across
variables, e.g., if for the first variable equal weights for mean performance and
stability are assumed and for the second one, a higher weight for mean perfor-
mance (e.g. 65) is assumed, then wmper = c(50, 65) must be used. Numeric
value of length 1 will be recycled with a warning message.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class mps with the following items.

mps 137

• observed: The observed value on a genotype-mean basis.

• performance: The performance for genotypes (BLUPs or BLUEs)

• performance_res: The rescaled values of genotype’s performance, considering ideotype_mper.

• stability: The stability for genotypes, chosen with argument stability.

• stability_res: The rescaled values of genotype’s stability, considering ideotype_stab.

• mps_ind: The mean performance and stability for the traits.

• h2: The broad-sense heritability for the traits.

• perf_method: The method for measuring genotype’s performance.

• wmper: The weight for the mean performance.

• sense_mper: The goal for genotype’s performance (l = lower, h = higher).

• stab_method: The method for measuring genotype’s stability.

• wstab: The weight for the mean stability.

• sense_stab: The goal for genotype’s stability (l = lower, h = higher).

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern
Italy. J. Genet. Breed. 46:269-278.

Doring, T.F., S. Knapp, and J.E. Cohen. 2015. Taylor’s power law and the stability of crop yields.
F. Crop. Res. 183: 294-302. doi:10.1016/j.fcr.2015.08.005

Doring, T.F., and M. Reckling. 2018. Detecting global trends of cereal yield stability by adjusting
the coefficient of variation. Eur. J. Agron. 99: 30-36. doi:10.1016/j.eja.2018.06.007

Eberhart, S.A., and W.A. Russell. 1966. Stability parameters for comparing Varieties. Crop Sci.
6:36-40. doi:10.2135/cropsci1966.0011183X000600010011x

Huehn, V.M. 1979. Beitrage zur erfassung der phanotypischen stabilitat. EDV Med. Biol. 10:112.

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x
location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

Mohammadi, R., & Amri, A. (2008). Comparison of parametric and non-parametric methods for
selecting stable and adapted durum wheat genotypes in variable environments. Euphytica, 159(3),
419-432. doi:10.1007/s1068100796006

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. doi:10.2134/agronj2019.03.0220

Resende MDV (2007) Matematica e estatistica na analise de experimentos e no melhoramento ge-
netico. Embrapa Florestas, Colombo

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of
variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

https://doi.org/10.1016/j.fcr.2015.08.005
https://doi.org/10.1016/j.eja.2018.06.007
https://doi.org/10.2135/cropsci1966.0011183X000600010011x
https://doi.org/10.4141/cjps88-018
https://doi.org/10.1007/s10681-007-9600-6
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1038/hdy.1972.87

138 mtmps

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment
interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

Wricke, G. 1965. Zur berechnung der okovalenz bei sommerweizen und hafer. Z. Pflanzenzuchtg
52:127-138.

See Also

mtsi(), mtmps(), mgidi()

Examples

library(metan)
The same approach as mtsi()
mean performance and stability for GY and HM
mean performance: The genotype's BLUP
stability: the WAASB index (lower is better)
weights: equal for mean performance and stability

model <-
mps(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

The mean performance and stability after rescaling
model$mps_ind

mtmps Multi-trait mean performance and stability index

Description

[Experimental]
Computes the multi-trait stability index proposed by Olivoto et al. (2019) considering different
parametric and non-parametric stability indexes.

Usage

mtmps(model, SI = 15, mineval = 1, verbose = TRUE)

Arguments

model An object of class mtmps
SI An integer (0-100). The selection intensity in percentage of the total number of

genotypes.
mineval The minimum value so that an eigenvector is retained in the factor analysis.
verbose If verbose = TRUE (Default), some results are shown in the console.

mtmps 139

Value

An object of class mtmps with the following items:

• data The data used to compute the factor analysis.

• cormat The correlation matrix among the environments.

• PCA The eigenvalues and explained variance.

• FA The factor analysis.

• KMO The result for the Kaiser-Meyer-Olkin test.

• MSA The measure of sampling adequacy for individual variable.

• communalities The communalities.

• communalities_mean The communalities’ mean.

• initial_loadings The initial loadings.

• finish_loadings The final loadings after varimax rotation.

• canonical_loadings The canonical loadings.

• scores_gen The scores for genotypes in all retained factors.

• scores_ide The scores for the ideotype in all retained factors.

• MTSI The multi-trait mean performance and stability index.

• contri_fac The relative contribution of each factor on the MTSI value. The lower the contri-
bution of a factor, the close of the ideotype the variables in such factor are.

• contri_fac_rank, contri_fac_rank_sel The rank for the contribution of each factor for all
genotypes and selected genotypes, respectively.

• sel_dif_trait, sel_dif_stab, sel_dif_mps A data frame containing the selection differential
(gains) for the mean performance, stability index, and mean performance and stability index,
respectively. The following variables are shown.

– VAR: the trait’s name.
– Factor: The factor that traits where grouped into.
– Xo: The original population mean.
– Xs: The mean of selected genotypes.
– SD and SDperc: The selection differential and selection differential in percentage, respec-

tively.
– h2: The broad-sense heritability.
– SG and SGperc: The selection gains and selection gains in percentage, respectively.
– sense: The desired selection sense.
– goal: selection gains match desired sense? 100 for yes and 0 for no.

• stat_dif_trait, stat_dif_stab, stat_dif_mps A data frame with the descriptive statistic for the
selection gains for the mean performance, stability index, and mean performance and stability
index, respectively. The following columns are shown by sense.

– sense: The desired selection sense.
– variable: the trait’s name.
– min: the minimum value for the selection gain.
– mean: the mean value for the selection gain.

140 mtmps

– ci: the confidence interval for the selection gain.

– sd.amo: the standard deviation for the selection gain.

– max: the maximum value for the selection gain.

– sum: the sum of the selection gain.

• sel_gen The selected genotypes.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and
stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969.
doi:10.2134/agronj2019.03.0220

See Also

mgidi(), mps(), get_model_data()

Examples

library(metan)
The same approach as mtsi()
mean performance and stability for GY and HM
mean performance: The genotype's BLUP
stability: the WAASB index (lower is better)
weights: equal for mean performance and stability

model <-
mps(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

selection <- mtmps(model)

gains for stability
selection$sel_dif_stab

gains for mean performance
selection$sel_dif_trait

https://doi.org/10.2134/agronj2019.03.0220

mtsi 141

mtsi Multi-trait stability index

Description

[Stable]

Computes the multi-trait stability index proposed by Olivoto et al. (2019)

Usage

mtsi(
.data,
index = "waasby",
ideotype = NULL,
SI = 15,
mineval = 1,
verbose = TRUE

)

Arguments

.data An object of class waasb or waas.

index If index = 'waasby' (default) both stability and mean performance are consid-
ered. If index = 'waasb' the multi-trait index will be computed considering the
stability of genotypes only. More details can be seen in waasb() and waas()
functions.

ideotype A vector of length nvar where nvar is the number of variables used to plan
the ideotype. Use 'h' to indicate the traits in which higher values are desired
or 'l' to indicate the variables in which lower values are desired. For exam-
ple, ideotype = c("h, h, h, h, l") will consider that the ideotype has higher
values for the first four traits and lower values for the last trait.

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

mineval The minimum value so that an eigenvector is retained in the factor analysis.

verbose If verbose = TRUE (Default) then some results are shown in the console.

Value

An object of class mtsi with the following items:

• data The data used to compute the factor analysis.

• cormat The correlation matrix among the environments.

• PCA The eigenvalues and explained variance.

• FA The factor analysis.

142 mtsi

• KMO The result for the Kaiser-Meyer-Olkin test.

• MSA The measure of sampling adequacy for individual variable.

• communalities The communalities.

• communalities_mean The communalities’ mean.

• initial_loadings The initial loadings.

• finish_loadings The final loadings after varimax rotation.

• canonical_loadings The canonical loadings.

• scores_gen The scores for genotypes in all retained factors.

• scores_ide The scores for the ideotype in all retained factors.

• MTSI The multi-trait stability index.

• contri_fac The relative contribution of each factor on the MTSI value. The lower the contri-
bution of a factor, the close of the ideotype the variables in such factor are.

• contri_fac_rank, contri_fac_rank_sel The rank for the contribution of each factor for all
genotypes and selected genotypes, respectively.

• sel_dif_trait, sel_dif_stab, sel_dif_mps A data frame containing the selection differential
(gains) for the traits, for the stability (WAASB index) WAASB, and for the mean performance
and stability (WAASBY indexes). The following variables are shown.

– VAR: the trait’s name.
– Factor: The factor that traits where grouped into.
– Xo: The original population mean.
– Xs: The mean of selected genotypes.
– SD and SDperc: The selection differential and selection differential in percentage, respec-

tively.
– h2: The broad-sense heritability.
– SG and SGperc: The selection gains and selection gains in percentage, respectively.
– sense: The desired selection sense.
– goal: selection gains match desired sense? 100 for yes and 0 for no.

• stat_dif_var, stat_dif_stab, stat_dif_mps A data frame with the descriptive statistic for the
selection gains for the traits, for the stability (WAASB index) WAASB, and for the mean
performance and stability (WAASBY index). The following variables are shown.

– sense: The desired selection sense.
– variable: the trait’s name.
– min: the minimum value for the selection gain.
– mean: the mean value for the selection gain.
– ci: the confidence interval for the selection gain.
– sd.amo: the standard deviation for the selection gain.
– max: the maximum value for the selection gain.
– sum: the sum of the selection gain.

• sel_gen The selected genotypes.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

network_plot 143

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and
stability in multi-environment trials II: Selection based on multiple traits. Agron. J. 111:2961-2969.
doi:10.2134/agronj2019.03.0220

See Also

mgidi(), waasb(), get_model_data()

Examples

library(metan)
Based on stability only, for both GY and HM, higher is better
mtsi_model <-

waasb(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

mtsi_index <-
mtsi(mtsi_model, index = 'waasb')

Based on mean performance and stability (using pipe operator %>%)
GY: higher is better
HM: lower is better

mtsi_index2 <-
data_ge %>%
waasb(ENV, GEN, REP,

resp = c(GY, HM),
mresp = c("h, l")) %>%

mtsi()

network_plot Network plot of a correlation matrix

Description

Produces a network plot of a correlation matrix or an object computed with corr_coef(). Variables
that are more highly correlated appear closer together and are joined by stronger (more opaque) and
wider paths. The proximity of the points is determined using multidimensional clustering, also
known as principal coordinates analysis (Gower, 1966). The color of the paths also indicates the
sign of the correlation (blue for positive and red for negative).

https://doi.org/10.2134/agronj2019.03.0220

144 network_plot

Usage

network_plot(
model,
min_cor = NULL,
show = c("signif", "all"),
p_val = 0.05,
legend = c("full", "range"),
colours = c("red", "white", "blue"),
legend_width = 1,
legend_height = 15,
legend_position = c("right", "left", "top", "bottom"),
curved = TRUE,
angle = 90,
curvature = 0.5,
expand_x = 0.25,
expand_y = 0.25

)

Arguments

model A model computed with corr_coef() or a symmetric matrix, often produced
with stats::cor().

min_cor Number to indicate the minimum value of correlations to plot (0-1 in absolute
terms). By default, all the correlations are plotted when model is a matrix, and
significant correlations (p-value < 0.05) when model is an object computed with
corr_coef().

show The correlations to be shown when model is an object computed with corr_coef().
Either "signif" (default) to show only significant correlations or "all" to show
all the correlations.

p_val The p-value to indicate significant correlations. Defaults to 0.05.

legend The type of legend. Either "full" (ranges from -1 to +1) or "range" (ranges
according to the data range). Defaults to "full".

colours A vector of colors to use for n-color gradient.

legend_width The width of the legend (considering position = "right")

legend_height The height of the legend (considering position = "right")
legend_position

The legend position. Defaults to "right".

curved Shows curved paths? Defaults to TRUE.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

non_collinear_vars 145

expand_x, expand_y
Vector of multiplicative range expansion factors. If length 1, both the lower and
upper limits of the scale are expanded outwards by mult. If length 2, the lower
limit is expanded by mult[1] and the upper limit by mult[2].

Value

A ggplot object

References

Gower, J.C. 1966. Some Distance Properties of Latent Root and Vector Methods Used in Multivari-
ate Analysis. Biometrika 53(3/4): 325–338. doi:10.2307/2333639

Examples

cor <- corr_coef(iris)
network_plot(cor)
network_plot(cor,

show = "all",
curved = FALSE,
legend_position = "bottom",
legend = "range")

non_collinear_vars Select a set of predictors with minimal multicollinearity

Description

[Stable]

Select a set of predictors with minimal multicollinearity using the variance inflation factor (VIF)
as criteria to remove collinear variables. The algorithm will: (i) compute the VIF value of the
correlation matrix containing the variables selected in ...; (ii) arrange the VIF values and delete
the variable with the highest VIF; and (iii) iterate step ii until VIF value is less than or equal to
max_vif.

Usage

non_collinear_vars(
.data,
...,
max_vif = 10,
missingval = "pairwise.complete.obs"

)

https://doi.org/10.2307/2333639

146 pairs_mantel

Arguments

.data The data set containing the variables.

... Variables to be submitted to selection. If ... is null then all the numeric vari-
ables from .data are used. It must be a single variable name or a comma-
separated list of unquoted variables names.

max_vif The maximum value for the Variance Inflation Factor (threshold) that will be
accepted in the set of selected predictors.

missingval How to deal with missing values. For more information, please see stats::cor().

Value

A data frame showing the number of selected predictors, maximum VIF value, condition number,
determinant value, selected predictors and removed predictors from the original set of variables.

Examples

library(metan)
All numeric variables
non_collinear_vars(data_ge2)

Select variables and choose a VIF threshold to 5
non_collinear_vars(data_ge2, EH, CL, CW, KW, NKE, max_vif = 5)

pairs_mantel Mantel test for a set of correlation matrices

Description

[Stable]
This function generate a pairwise matrix of plots to compare the similarity of two or more correla-
tion matrices. In the upper diagonal are presented the plots and in the lower diagonal the result of
Mantel test based on permutations.

Usage

pairs_mantel(
...,
type = 1,
nrepet = 1000,
names = NULL,
prob = 0.05,
diag = FALSE,
export = FALSE,
main = "auto",
file.type = "pdf",

pairs_mantel 147

file.name = NULL,
width = 8,
height = 7,
resolution = 300,
size.point = 0.5,
shape.point = 19,
alpha.point = 1,
fill.point = NULL,
col.point = "black",
minsize = 2,
maxsize = 3,
signcol = "green",
alpha = 0.15,
diagcol = "gray",
col.up.panel = "gray",
col.lw.panel = "gray",
col.dia.panel = "gray",
pan.spacing = 0.15,
digits = 2

)

Arguments

... The input matrices. May be an output generated by the function lpcor or a
coerced list generated by the function as.lpcor

type The type of correlation if an obect generated by the function lpcor is used. 1 =
Linear correlation matrices, or 2 = partial correlation matrices.

nrepet The number of permutations. Default is 1000

names An optional vector of names of the same length of

prob The error probability for Mantel test.

diag Logical argument. If TRUE, the Kernel density is shown in the diagonal of plot.

export Logical argument. If TRUE, then the plot is exported to the current directory.

main The title of the plot, set to ’auto’.

file.type The format of the file if export = TRUE. Set to 'pdf'. Other possible values are
*.tiff using file.type = 'tiff'.

file.name The name of the plot when exported. Set to NULL, i.e., automatically.

width The width of the plot, set to 8.

height The height of the plot, set to 7.

resolution The resolution of the plot if file.type = 'tiff' is used. Set to 300 (300 dpi).

size.point The size of the points in the plot. Set to 0.5.

shape.point The shape of the point, set to 19.

alpha.point The value for transparency of the points: 1 = full color.

fill.point The color to fill the points. Valid argument if points are between 21 and 25.

col.point The color for the edge of the point, set to black.

148 pairs_mantel

minsize The size of the letter that will represent the smallest correlation coefficient.

maxsize The size of the letter that will represent the largest correlation coefficient.

signcol The colour that indicate significant correlations (based on the prob value.), set
to ’green’.

alpha The value for transparency of the color informed in signcol, when 1 = full
color. Set to 0.15.

diagcol The color in the kernel distribution. Set to ’gray’.

col.up.panel, col.lw.panel, col.dia.panel
The color for the opper, lower and diagonal pannels. Set to ’gray’, ’gray’, and
’gray’, respectively.

pan.spacing The space between the pannels. Set to 0.15.

digits The number of digits to show in the plot.

Value

An object of class gg, ggmatrix.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

mantel_test()

Examples

library(metan)
iris dataset
lpc <- iris %>%

group_by(Species) %>%
lpcor() %>%
pairs_mantel(names = c('setosa', 'versicolor', 'virginica'))

mtcars dataset
mt_num <- select_numeric_cols(mtcars)
lpdata <- as.lpcor(cor(mt_num[1:5]),

cor(mt_num[1:5]),
cor(mt_num[2:6]),
cor(mt_num[4:8])) %>%

pairs_mantel()

path_coeff 149

path_coeff Path coefficients with minimal multicollinearity

Description

[Stable]

• path_coeff() computes a path analysis using a data frame as input data.

• path_coeff_seq() computes a sequential path analysis using primary and secondary traits.

• path_coeff_mat() computes a path analysis using correlation matrices as input data.

Usage

path_coeff(
.data,
resp,
pred = everything(),
by = NULL,
exclude = FALSE,
correction = NULL,
knumber = 50,
brutstep = FALSE,
maxvif = 10,
missingval = "pairwise.complete.obs",
plot_res = FALSE,
verbose = TRUE,
...

)

path_coeff_mat(cor_mat, resp, correction = NULL, knumber = 50, verbose = TRUE)

path_coeff_seq(.data, resp, chain_1, chain_2, by = NULL, verbose = TRUE, ...)

Arguments

.data The data. Must be a data frame or a grouped data passed from dplyr::group_by()

resp The dependent trait.

pred The predictor traits. set to everything(), i.e., the predictor traits are all the
numeric traits in the data except that in resp. To select multiple traits, use
a comma-separated vector of names, (e.g., pred = c(V1, V2, V2)), an interval
of trait names, (e.g., pred = c(V1:V3)), or even a select helper (e.g., pred =
starts_with("V")).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().
To compute the statistics by more than one grouping variable use that function.

150 path_coeff

exclude Logical argument, set to false. If exclude = TRUE, then the traits in pred are
deleted from the data, and the analysis will use as predictor those that remained,
except that in resp.

correction Set to NULL. A correction value (k) that will be added into the diagonal ele-
ments of the X’X matrix aiming at reducing the harmful problems of the multi-
collinearity in path analysis (Olivoto et al., 2017)

knumber When correction = NULL, a plot showing the values of direct effects in a set of
different k values (0-1) is produced. knumber is the number of k values used in
the range of 0 to 1.

brutstep Logical argument, set to FALSE. If true, then an algorithm will select a subset
of variables with minimal multicollinearity and fit a set of possible models. See
the Details section for more information.

maxvif The maximum value for the Variance Inflation Factor (cut point) that will be
accepted. See the Details section for more information.

missingval How to deal with missing values. For more information, please see stats::cor().

plot_res If TRUE, create a scatter plot of residual against predicted value and a normal
Q-Q plot.

verbose If verbose = TRUE then some results are shown in the console.

... Depends on the function used:

• For path_coeff() additional arguments passed on to stats::plot.lm().
• For path_coeff_seq() additional arguments passed on to path_coeff.

cor_mat Matrix of correlations containing both dependent and independent traits.
chain_1, chain_2

The traits used in the first (primary) and second (secondary) chain.

Details

In path_coeff(), when brutstep = TRUE, an algorithm to select a set of predictors with minimal
multicollinearity and high explanatory power is implemented. first, the algorithm will select a set
of predictors with minimal multicollinearity. The selection is based on the variance inflation fac-
tor (VIF). An iterative process is performed until the maximum VIF observed is less than maxvif.
The variables selected in this iterative process are then used in a series of stepwise-based regres-
sions. The first model is fitted and p-1 predictor variables are retained (p is the number of variables
selected in the iterative process. The second model adjusts a regression considering p-2 selected
variables, and so on until the last model, which considers only two variables. Three objects are
created. Summary, with the process summary, Models, containing the aforementioned values for all
the adjusted models; and Selectedpred, a vector with the name of the selected variables in the
iterative process.

Value

Depends on the function used:

• path_coeff(), returns a list with the following items:

– Corr.x A correlation matrix between the predictor variables.

path_coeff 151

– Corr.y A vector of correlations between each predictor variable with the dependent vari-
able.

– Coefficients The path coefficients. Direct effects are the diagonal elements, and the indi-
rect effects those in the off-diagonal elements (lines).

– Eigen Eigenvectors and eigenvalues of the Corr.x.

– VIF The Variance Inflation Factors.
– plot A ggplot2-based graphic showing the direct effects in 21 different k values.
– Predictors The predictor variables used in the model.
– CN The Condition Number, i.e., the ratio between the highest and lowest eigenvalue.
– Det The matrix determinant of the Corr.x..
– R2 The coefficient of determination of the model.
– Residual The residual effect of the model.
– Response The response variable.
– weightvar The order of the predictor variables with the highest weight (highest eigen-

vector) in the lowest eigenvalue.

• path_coeff_seq() returns a list with the following objects

– resp_fc an object of class path_coeff with the results for the analysis with dependent
trait and first chain predictors.

– resp_sc an object of class path_coeff with the results for the analysis with dependent
trait and second chain predictors.

– resp_sc2 The path coefficients of second chain predictors and the dependent trait through
the first chain predictors

– fc_sc_list A list of objects with the path analysis using each trait in the first chain as
dependent and second chain as predictors.

– fc_sc_coef The coefficients between first- and second-chain traits.
– cor_mat A correlation matrix between the analyzed traits. If .data is a grouped data

passed from dplyr::group_by() then the results will be returned into a list-column of
data frames.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., V.Q. Souza, M. Nardino, I.R. Carvalho, M. Ferrari, A.J. Pelegrin, V.J. Szareski, and D.
Schmidt. 2017. Multicollinearity in path analysis: a simple method to reduce its effects. Agron. J.
109:131-142. doi:10.2134/agronj2016.04.0196

Olivoto, T., M. Nardino, I.R. Carvalho, D.N. Follmann, M. Ferrari, et al. 2017. REML/BLUP and
sequential path analysis in estimating genotypic values and interrelationships among simple maize
grain yield-related traits. Genet. Mol. Res. 16(1): gmr16019525. doi:10.4238/gmr16019525

Examples

library(metan)

https://doi.org/10.2134/agronj2016.04.0196
https://doi.org/10.4238/gmr16019525

152 performs_ammi

Using KW as the response variable and all other ones as predictors
pcoeff <- path_coeff(data_ge2, resp = KW)

The same as above, but using the correlation matrix
cor_mat <- cor(data_ge2 %>% select_numeric_cols())
pcoeff2 <- path_coeff_mat(cor_mat, resp = KW)

Declaring the predictors
Create a residual plot with 'plot_res = TRUE'
pcoeff3<- path_coeff(data_ge2,

resp = KW,
pred = c(PH, EH, NKE, TKW),
plot_res = TRUE)

sequential path analysis
KW as dependent trait
NKE and TKW as primary predictors
PH, EH, EP, and EL as secondary traits
pcoeff4 <-
path_coeff_seq(data_ge2,

resp = KW,
chain_1 = c(NKE, TKW),
chain_2 = c(PH, EH, EP, EL))

pcoeff4$resp_sc$Coefficients
pcoeff4$resp_sc2

performs_ammi Additive Main effects and Multiplicative Interaction

Description

[Stable]
Compute the Additive Main effects and Multiplicative interaction (AMMI) model. The estimate of
the response variable for the ith genotype in the jth environment (yij) using the AMMI model, is
given as follows:

yij = µ+ αi + τj +

p∑
k=1

λkaiktjk + ρij + εij

where λk is the singular value for the k-th interaction principal component axis (IPCA); aik is the
i-th element of the k-th eigenvector; tjk is the jth element of the kth eigenvector. A residual ρij
remains, if not all p IPCA are used, where p ≤ min(g − 1; e− 1).

This function also serves as a helper function for other procedures performed in the metan package
such as waas() and wsmp()

Usage

performs_ammi(.data, env, gen, rep, resp, block = NULL, verbose = TRUE, ...)

performs_ammi 153

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments

gen The name of the column that contains the levels of the genotypes

rep The name of the column that contains the levels of the replications/blocks

resp The response variable(s). To analyze multiple variables in a single procedure,
use comma-separated list of unquoted variable names, i.e., resp = c(var1, var2,
var3), or any select helper like resp = contains("_PLA").

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

verbose Logical argument. If verbose = FALSE the code will run silently.

... Arguments passed to the function impute_missing_val() for imputation of
missing values in case of unbalanced data.

Value

• ANOVA: The analysis of variance for the AMMI model.

• PCA: The principal component analysis

• MeansGxE: The means of genotypes in the environments

• model: scores for genotypes and environments in all the possible axes.

• augment: Information about each observation in the dataset. This includes predicted values
in the fitted column, residuals in the resid column, standardized residuals in the stdres
column, the diagonal of the ’hat’ matrix in the hat, and standard errors for the fitted values in
the se.fit column.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

impute_missing_val(), waas(), waas_means(), waasb(), get_model_data()

154 plaisted_peterson

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, resp = c(GY, HM))

PC1 x PC2 (variable GY)
p1 <- plot_scores(model)
p1

PC1 x PC2 (variable HM)
plot_scores(model,

var = 2, # or "HM"
type = 2)

Nominal yield plot (variable GY)
Draw a convex hull polygon
plot_scores(model, type = 4)

Unbalanced data (GEN 2 in E1 missing)
mod <-

data_ge %>%
remove_rows(4:6) %>%
droplevels() %>%
performs_ammi(ENV, GEN, REP, GY)

p2 <- plot_scores(mod)
arrange_ggplot(p1, p2, tag_levels = list(c("Balanced data", "Unbalanced data")))

plaisted_peterson Stability analysis based on Plaisted and Peterson (1959)

Description

[Stable]
The function computes the stability as the arithmetic mean of the variance component of the genotype-
environment interaction between environment pairs that includes a given genotype

Usage

plaisted_peterson(.data, env, gen, rep, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

plot.anova_joint 155

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class plaisted_peterson containing the results for each variable used in the argument
resp.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Plaisted, R.L., and L.C. Peterson. 1959. A technique for evaluating the ability of selections to
yield consistently in different locations or seasons. American Potato Journal 36(11): 381–385.
doi:10.1007/BF02852735

Examples

library(metan)
plaisted_peterson(data_ge, ENV, GEN, REP, GY)

plot.anova_joint Several types of residual plots

Description

Residual plots for a output model of class anova_joint. Seven types of plots are produced: (1)
Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized resid-
uals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals
and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

Usage

S3 method for class 'anova_joint'
plot(x, ...)

Arguments

x An object of class anova_joint.

... Additional arguments passed on to the function residual_plots()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

https://doi.org/10.1007/BF02852735

156 plot.can_cor

Examples

library(metan)
model <- anova_joint(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,

which = c(3, 5),
nrow = 2,
labels = TRUE,
size.lab.out = 4)

plot.can_cor Plots an object of class can_cor

Description

Graphs of the Canonical Correlation Analysis

Usage

S3 method for class 'can_cor'
plot(
x,
type = 1,
plot_theme = theme_metan(),
size.tex.lab = 12,
size.tex.pa = 3.5,
x.lab = NULL,
x.lim = NULL,
x.breaks = waiver(),
y.lab = NULL,
y.lim = NULL,
y.breaks = waiver(),
axis.expand = 1.1,
shape = 21,
col.shape = "orange",
col.alpha = 0.9,
size.shape = 3.5,
size.bor.tick = 0.3,
labels = FALSE,
main = NULL,
...

)

plot.can_cor 157

Arguments

x The waasb object

type The type of the plot. Defaults to type = 1 (Scree-plot of the correlations of
the canonical loadings). Use type = 2, to produce a plot with the scores of the
variables in the first group, type = 3 to produce a plot with the scores of the
variables in the second group, or type = 4 to produce a circle of correlations.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details,see ggplot2::theme().

size.tex.lab The size of the text in axis text and labels.

size.tex.pa The size of the text of the plot area. Default is 3.5.

x.lab The label of x-axis. Each plot has a default value. New arguments can be in-
serted as x.lab = 'my label'.

x.lim The range of x-axis. Default is NULL (maximum and minimum values of the data
set). New arguments can be inserted as x.lim = c(x.min, x.max).

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

y.lab The label of y-axis. Each plot has a default value. New arguments can be in-
serted as y.lab = 'my label'.

y.lim The range of y-axis. Default is NULL. The same arguments than x.lim can be
used.

y.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. The
same arguments than x.breaks can be used.

axis.expand Multiplication factor to expand the axis limits by to enable fitting of labels.
Default is 1.1.

shape The shape of points in the plot. Default is 21 (circle). Values must be between
21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25 (low
triangle).

col.shape A vector of length 2 that contains the color of shapes for genotypes above and
below of the mean, respectively. Defaults to "orange". c("blue", "red").

col.alpha The alpha value for the color. Default is 0.9. Values must be between 0 (full
transparency) to 1 (full color).

size.shape The size of the shape in the plot. Default is 3.5.

size.bor.tick The size of tick of shape. Default is 0.3. The size of the shape will be size.shape
+ size.bor.tick

labels Logical arguments. If TRUE then the points in the plot will have labels.

main The title of the plot. Defaults to NULL, in which each plot will have a default
title. Use a string text to create an own title or set to main = FALSE to omit the
plot title.

... Currently not used.

Value

An object of class gg, ggplot.

158 plot.clustering

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
cc1 = can_corr(data_ge2,

FG = c(PH, EH, EP),
SG = c(EL, ED, CL, CD, CW, KW, NR))

plot(cc1, 2)

cc2 <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN") %>%
can_corr(FG = c(PH, EH, EP),

SG = c(EL, ED, CL, CD, CW, KW, NR))
plot(cc2, 2, labels = TRUE)

plot.clustering Plot an object of class clustering

Description

Plot an object of class clustering

Usage

S3 method for class 'clustering'
plot(x, horiz = TRUE, type = "dendrogram", ...)

Arguments

x An object of class clustering

horiz Logical indicating if the dendrogram should be drawn horizontally or not.

type The type of plot. Must be one of the ’dendrogram’ or ’cophenetic’.

... Other arguments passed from the function plot.dendrogram or abline.

Value

An object of class gg, ggplot if type == "cophenetic".

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

plot.correlated_vars 159

Examples

mean_gen <-
data_ge2 %>%
mean_by(GEN) %>%
column_to_rownames("GEN")

d <- clustering(mean_gen)
plot(d, xlab = "Euclidean Distance")

plot.correlated_vars Plot an object of class correlated_vars

Description

Plot an object of class correlated_vars

Usage

S3 method for class 'correlated_vars'
plot(x, ...)

Arguments

x An object of class correlated_vars.

... Currently not used.

Value

An object of class gg.

Examples

library(metan)
y <- rnorm(n = 10)
cor_vars <- correlated_vars(y, nvar = 6)
plot(cor_vars)

160 plot.corr_coef

plot.corr_coef Create a correlation heat map

Description

Create a correlation heat map for object of class corr_coef

Usage

S3 method for class 'corr_coef'
plot(
x,
type = "lower",
diag = FALSE,
reorder = TRUE,
signif = c("stars", "pval"),
show = c("all", "signif"),
p_val = 0.05,
caption = TRUE,
digits.cor = 2,
digits.pval = 3,
col.low = "red",
col.mid = "white",
col.high = "blue",
lab.x.position = NULL,
lab.y.position = NULL,
legend.position = NULL,
legend.title = "Pearson's\nCorrelation",
size.text.cor = 3,
size.text.signif = 3,
size.text.lab = 10,
...

)

Arguments

x The data set.

type The type of heat map to produce. Either lower (default) to produce a lower
triangle heat map or upper to produce an upper triangular heat map.

diag Plot diagonal elements? Defaults to FALSE.

reorder Reorder the correlation matrix to identify the hidden pattern? Defaults to TRUE.

signif How to show significant correlations. If "stars" is used (default), stars are used
showing the significance at 0.05 (""), 0.01 ("") and 0.001 ("") probability error.
If signif = "pval", then the p-values are shown.

show The correlations to show. Either all (default) or signif (only significant cor-
relations).

plot.corr_coef 161

p_val The p-value to the correlation significance.

caption Logical. If TRUE (Default) includes a caption with the significance meaning for
stars.

digits.cor, digits.pval
The significant digits to show for correlations and p-values, respectively.

col.low, col.mid, col.high
The color for the low (-1), mid(0) and high (1) points in the color key. Defaults
to blue, white, and red, respectively.

lab.x.position, lab.y.position
The position of the x and y axis label. Defaults to "bottom" and "right" if
type = "lower" or "top" and "left" if type = "upper".

legend.position

The legend position in the plot.

legend.title The title of the color key. Defaults to "Pearson's Correlation".

size.text.cor The size of the text for correlation values. Defaults to 3.
size.text.signif

The size of the text for significance values (stars or p-values). Defaults to 3.

size.text.lab The size of the text for labels. Defaults to 10.

... Currently not used.

Value

An object of class gg, ggplot

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
All numeric variables
x <- corr_coef(data_ge2)
plot(x)
plot(x, reorder = FALSE)

Select variables
sel <- corr_coef(data_ge2, EP, EL, CD, CL)
plot(sel,

type = "upper",
reorder = FALSE,
size.text.lab = 14,
size.text.plot = 5)

162 plot.cvalidation

plot.cvalidation Plot the RMSPD of a cross-validation procedure

Description

Boxplot showing the Root Means Square Prediction Difference of of a cross validation procedure.

Usage

S3 method for class 'cvalidation'
plot(
x,
violin = FALSE,
export = FALSE,
order_box = FALSE,
x.lab = NULL,
y.lab = NULL,
size.tex.lab = 12,
file.type = "pdf",
file.name = NULL,
plot_theme = theme_metan(),
width = 6,
height = 6,
resolution = 300,
col.violin = "gray90",
col.boxplot = "gray70",
col.boxplot.win = "cyan",
width.boxplot = 0.6,
x.lim = NULL,
x.breaks = waiver(),
...

)

Arguments

x An object of class cvalidation fitted with the functions cv_ammi(), cv_ammif(),
cv_blup(), or a bound object fitted with bind_cv().

violin Define if a violin plot is used with boxplot. Default is ’TRUE’

export Export (or not) the plot. Default is T.

order_box Logical argument. If TRUE then the boxplots will be ordered according to the
values of the RMSPD.

x.lab The label of x-axis. New arguments can be inserted as x.lab = 'my x label'.

y.lab The label of y-axis. New arguments can be inserted as y.lab = 'my y label'.

size.tex.lab The size of the text in axis text and labels.

plot.cvalidation 163

file.type The type of file to be exported. Default is pdf, Graphic can also be exported in
*.tiff format by declaring file.type = 'tiff'.

file.name The name of the file for exportation, default is NULL, i.e. the files are automati-
cally named.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details,see ggplot2::theme().

width The width ’inch’ of the plot. Default is 6.

height The height ’inch’ of the plot. Default is 6.

resolution The resolution of the plot. Parameter valid if file.type = 'tiff' is used. De-
fault is 300 (300 dpi)

col.violin Parameter valid if violin = T. Define the color of the violin plot. Default is
’gray90.

col.boxplot Define the color for boxplot. Default is ’gray70’.
col.boxplot.win

Define the color for boxplot of the best model. Default is ’cyan’.

width.boxplot The width of boxplots. Default is 0.2.

x.lim The range of x-axis. Default is NULL (maximum and minimum values of the data
set). New arguments can be inserted as x.lim = c(x.min, x.max).

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

... Currently not used.

Details

Five statistics are shown in this type of plot. The lower and upper hinges correspond to the first
and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the
largest value no further than 1.5 * IQR from the hinge (where IQR is the inter-quartile range). The
lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge. Data
beyond the end of the whiskers are considered outlying points.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

validation <- cv_ammif(data_ge2,
resp = EH,
gen = GEN,
env = ENV,
rep = REP,

164 plot.env_dissimilarity

nboot = 5)
plot(validation)

plot.env_dissimilarity

Plot an object of class env_dissimilarity

Description

Create dendrograms to show the dissimilarity between environments.

Usage

S3 method for class 'env_dissimilarity'
plot(x, var = 1, nclust = NULL, ...)

Arguments

x An object of class env_dissimilarity

var The variable to plot. Defaults to var = 1 the first variable of x.

nclust The number of clusters to show.

... Other arguments bo be passed to the function stats::hclust().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
plot(mod)

plot.env_stratification 165

plot.env_stratification

Plot the env_stratification model

Description

This function plots the correlation between environments generated with env_stratification()

Usage

S3 method for class 'env_stratification'
plot(x, var = 1, ...)

Arguments

x An object of class env_stratification

var The variable to plot. Defaults to var = 1 the first variable of x.

... Further arguments passed to plot.corr_coef()

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

env_dissimilarity()

Examples

library(metan)
model <-
env_stratification(data_ge,

env = ENV,
gen = GEN,
resp = GY)

plot(model)

166 plot.fai_blup

plot.fai_blup Multi-trait selection index

Description

Plot the multitrait index based on factor analysis and ideotype-design proposed by Rocha et al.
(2018).

Usage

S3 method for class 'fai_blup'
plot(
x,
ideotype = 1,
SI = 15,
radar = TRUE,
arrange.label = FALSE,
size.point = 2.5,
size.line = 0.7,
size.text = 10,
col.sel = "red",
col.nonsel = "black",
...

)

Arguments

x An object of class waasb

ideotype The ideotype to be plotted. Default is 1.

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

radar Logical argument. If true (default) a radar plot is generated after using coord_polar().

arrange.label Logical argument. If TRUE, the labels are arranged to avoid text overlapping.
This becomes useful when the number of genotypes is large, say, more than 30.

size.point The size of the point in graphic. Defaults to 2.5.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

col.sel The colour for selected genotypes. Defaults to "red".

col.nonsel The colour for nonselected genotypes. Defaults to "black".

... Other arguments to be passed from ggplot2::theme().

Value

An object of class gg, ggplot.

plot.gafem 167

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Rocha, J.R.A.S.C.R, J.C. Machado, and P.C.S. Carneiro. 2018. Multitrait index based on factor
analysis and ideotype-design: proposal and application on elephant grass breeding for bioenergy.
GCB Bioenergy 10:52-60. doi:10.1111/gcbb.12443

Examples

library(metan)

mod <- waasb(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

FAI <- fai_blup(mod,
DI = c('max, max'),
UI = c('min, min'))

plot(FAI)

plot.gafem Several types of residual plots

Description

Residual plots for a output model of class gafem. Seven types of plots are produced: (1) Residuals
vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs
Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6)
standardized residuals vs observation order, and (7) 1:1 line plot.

Usage

S3 method for class 'gafem'
plot(x, ...)

Arguments

x An object of class gafem.

... Additional arguments passed on to the function residual_plots()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

https://doi.org/10.1111/gcbb.12443

168 plot.gamem

Examples

library(metan)
model <- gafem(data_g, GEN, REP, PH)

plot(model)
plot(model,

which = c(3, 5),
nrow = 2,
labels = TRUE,
size.lab.out = 4)

plot.gamem Several types of residual plots

Description

Residual plots for a output model of class gamem. Six types of plots are produced: (1) Residuals
vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs
Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6)
standardized residuals vs observation order. For a waasb object, normal Q-Q plot for random effects
may also be obtained declaring type = 're'

Usage

S3 method for class 'gamem'
plot(
x,
var = 1,
type = "res",
position = "fill",
rotate = FALSE,
conf = 0.95,
out = "print",
n.dodge = 1,
check.overlap = FALSE,
labels = FALSE,
plot_theme = theme_metan(),
alpha = 0.2,
fill.hist = "gray",
col.hist = "black",
col.point = "black",
col.line = "red",
col.lab.out = "red",
size.line = 0.7,
size.text = 10,

plot.gamem 169

width.bar = 0.75,
size.lab.out = 2.5,
size.tex.lab = 10,
size.shape = 1.5,
bins = 30,
which = c(1:4),
ncol = NULL,
nrow = NULL,
...

)

Arguments

x An object of class gamem.

var The variable to plot. Defaults to var = 1 the first variable of x.

type One of the "res" to plot the model residuals (default), type = 're' to plot nor-
mal Q-Q plots for the random effects, or "vcomp" to create a bar plot with the
variance components.

position The position adjustment when type = "vcomp". Defaults to "fill", which
shows relative proportions at each trait by stacking the bars and then standard-
izing each bar to have the same height. Use position = "stack" to plot the
phenotypic variance for each trait.

rotate Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and
value in the x axis.

conf Level of confidence interval to use in the Q-Q plot (0.95 by default).

out How the output is returned. Must be one of the ’print’ (default) or ’return’.

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

labels Logical argument. If TRUE labels the points outside confidence interval limits.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

alpha The transparency of confidence band in the Q-Q plot. Must be a number between
0 (opaque) and 1 (full transparency).

fill.hist The color to fill the histogram. Default is ’gray’.

col.hist The color of the border of the the histogram. Default is ’black’.

col.point The color of the points in the graphic. Default is ’black’.

col.line The color of the lines in the graphic. Default is ’red’.

col.lab.out The color of the labels for the ’outlying’ points.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

width.bar The width of the bars if type = "contribution".

170 plot.ge_cluster

size.lab.out The size of the labels for the ’outlying’ points.

size.tex.lab The size of the text in axis text and labels.

size.shape The size of the shape in the plots.

bins The number of bins to use in the histogram. Default is 30.

which Which graphics should be plotted. Default is which = c(1:4) that means that
the first four graphics will be plotted.

ncol, nrow The number of columns and rows of the plot pannel. Defaults to NULL

... Additional arguments passed on to the function patchwork::wrap_plots().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- gamem(data_g,

gen = GEN,
rep = REP,
resp = PH)

plot(model)

plot.ge_cluster Plot an object of class ge_cluster

Description

Plot an object of class ge_cluster

Usage

S3 method for class 'ge_cluster'
plot(x, nclust = NULL, xlab = "", ...)

Arguments

x An object of class ge_cluster

nclust The number of clusters to show.

xlab The label of the x axis.

... Other arguments passed from the function plot.hclust.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

plot.ge_effects 171

plot.ge_effects Plot an object of class ge_effects

Description

Plot the regression model generated by the function ge_effects.

Usage

S3 method for class 'ge_effects'
plot(
x,
var = 1,
plot_theme = theme_metan(),
x.lab = NULL,
y.lab = NULL,
leg.position = "right",
size.text = 12,
...

)

Arguments

x An object of class ge_effects

var The variable to plot. Defaults to var = 1 the first variable of x.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

x.lab The label of x-axis. Each plot has a default value. New arguments can be in-
serted as x.lab = "my label".

y.lab The label of y-axis. Each plot has a default value. New arguments can be in-
serted as y.lab = "my label".

leg.position The position of the legend.

size.text The size of the text in the axes text and labels. Default is 12.

... Current not used.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

ge_plot()

172 plot.ge_factanal

Examples

library(metan)
ge_eff <- ge_effects(data_ge2, ENV, GEN, PH)
plot(ge_eff)

plot.ge_factanal Plot the ge_factanal model

Description

This function plot the scores for genotypes obtained in the factor analysis to interpret the stability

Usage

S3 method for class 'ge_factanal'
plot(
x,
var = 1,
plot_theme = theme_metan(),
x.lim = NULL,
x.breaks = waiver(),
x.lab = NULL,
y.lim = NULL,
y.breaks = waiver(),
y.lab = NULL,
shape = 21,
col.shape = "gray30",
col.alpha = 1,
size.shape = 2.2,
size.bor.tick = 0.3,
size.tex.lab = 12,
size.tex.pa = 3.5,
force.repel = 1,
line.type = "dashed",
line.alpha = 1,
col.line = "black",
size.line = 0.5,
...

)

Arguments

x An object of class ge_factanal

var The variable to plot. Defaults to var = 1 the first variable of x.

plot.ge_factanal 173

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

x.lim The range of x-axis. Default is NULL (maximum and minimum values of the data
set). New arguments can be inserted as x.lim = c(x.min, x.max).

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

x.lab The label of x-axis. Each plot has a default value. New arguments can be in-
serted as x.lab = "my label".

y.lim The range of x-axis. Default is NULL. The same arguments than x.lim can be
used.

y.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. The
same arguments than x.breaks can be used.

y.lab The label of y-axis. Each plot has a default value. New arguments can be in-
serted as y.lab = "my label".

shape The shape for genotype indication in the plot. Default is 1 (circle). Values
between 21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25
(low triangle) allows a color for fill the shape.

col.shape The shape color for genotypes. Must be one value or a vector of colors with the
same length of the number of genotypes. Default is "gray30". Other values can
be attributed. For example, transparent_color(), will make a plot with only
an outline around the shape area.

col.alpha The alpha value for the color. Default is 1. Values must be between 0 (full
transparency) to 1 (full color).

size.shape The size of the shape (both for genotypes and environments). Default is 2.2.

size.bor.tick The size of tick of shape. Default is 0.3. The size of the shape will be size.shape
+ size.bor.tick

size.tex.lab The size of the text in the axes text and labels. Default is 12.

size.tex.pa The size of the text of the plot area. Default is 3.5.

force.repel Force of repulsion between overlapping text labels. Defaults to 1.

line.type The type of the line that indicate the means in the biplot. Default is "solid".
Other values that can be attributed are: "blank", no lines in the biplot, "dashed", "dotted", "dotdash", "longdash", and "twodash".

line.alpha The alpha value that combine the line with the background to create the appear-
ance of partial or full transparency. Default is 0.4. Values must be between "0"
(full transparency) to "1" (full color).

col.line The color of the line that indicate the means in the biplot. Default is "gray"

size.line The size of the line that indicate the means in the biplot. Default is 0.5.

... Currently not used..

Value

An object of class gg, ggplot.

174 plot.ge_reg

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

ge_factanal()

Examples

library(metan)
library(ggplot2)
model = ge_factanal(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

plot(model)

plot(model,
size.shape = 3,
force.repel = 10,
col.shape = "orange",
col.line = "red")

plot.ge_reg Plot an object of class ge_reg

Description

Plot the regression model generated by the function ge_reg.

Usage

S3 method for class 'ge_reg'
plot(
x,
var = 1,
type = 1,
plot_theme = theme_metan(),
x.lim = NULL,
x.breaks = waiver(),
x.lab = NULL,
y.lim = NULL,
y.breaks = waiver(),
y.lab = NULL,
leg.position = "right",
size.tex.lab = 12,

plot.ge_reg 175

...
)

Arguments

x An object of class ge_factanal
var The variable to plot. Defaults to var = 1 the first variable of x.
type The type of plot to show. type = 1 produces a plot with the environmental index

in the x axis and the genotype mean yield in the y axis. type = 2 produces a plot
with the response variable in the x axis and the slope/deviations of the regression
in the y axis.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

x.lim The range of x-axis. Default is NULL (maximum and minimum values of the data
set). New arguments can be inserted as x.lim = c(x.min, x.max).

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

x.lab The label of x-axis. Each plot has a default value. New arguments can be in-
serted as x.lab = "my label".

y.lim The range of x-axis. Default is NULL. The same arguments than x.lim can be
used.

y.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. The
same arguments than x.breaks can be used.

y.lab The label of y-axis. Each plot has a default value. New arguments can be in-
serted as y.lab = "my label".

leg.position The position of the legend.
size.tex.lab The size of the text in the axes text and labels. Default is 12.
... Currently not used..

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

ge_factanal()

Examples

library(metan)
model <- ge_reg(data_ge2, ENV, GEN, REP, PH)
plot(model)

176 plot.gge

plot.gge Create GGE, GT or GYT biplots

Description

Produces a ggplot2-based GGE-GT-GYT biplot based on a model fitted with the functions gge(),
gtb(), and gytb().

Usage

S3 method for class 'gge'
plot(
x,
var = 1,
type = 1,
repel = TRUE,
repulsion = 1,
max_overlaps = 20,
sel_env = NA,
sel_gen = NA,
sel_gen1 = NA,
sel_gen2 = NA,
shape.gen = 21,
shape.env = 23,
line.type.gen = "dotted",
size.shape = 2.2,
size.shape.win = 3.2,
size.stroke = 0.3,
col.stroke = "black",
col.gen = "blue",
col.env = "forestgreen",
col.line = "forestgreen",
col.alpha = 1,
col.circle = "gray",
col.alpha.circle = 0.5,
leg.lab = NULL,
size.text.gen = 3.5,
size.text.env = 3.5,
size.text.lab = 12,
size.text.win = 4.5,
size.line = 0.5,
axis_expand = 1.2,
title = TRUE,
plot_theme = theme_metan(),
...

)

plot.gge 177

Arguments

x An object with classes gge gtb, or gytb.

var The variable to plot (useful for gge objects. Defaults to var = 1 the first variable
of x.

type The type of biplot to produce.

1. Basic biplot.
2. Mean performance vs. stability (gge biplots) or the The Average Tester

Coordination view for genotype-trait and genotype-yield*trait biplots.
3. Which-won-where.
4. Discriminativeness vs. representativeness.
5. Examine an environment (or trait/yield*trait combination).
6. Ranking environments (or trait/yield*trait combination).
7. Examine a genotype.
8. Ranking genotypes.
9. Compare two genotypes.

10. Relationship among environments (or trait/yield*trait combination).

repel If TRUE (default), the text labels repel away from each other and away from the
data points.

repulsion Force of repulsion between overlapping text labels. Defaults to 1.

max_overlaps Exclude text labels that overlap too many things. Defaults to 20.
sel_env, sel_gen

The name of the environment (or trait/yield*trait combination) and genotype
to examine when type = 5 and type = 7, respectively. Must be a string which
matches a environment or genotype label.

sel_gen1, sel_gen2
The name of genotypes to compare between when type = 9. Must be a string
present in the genotype’s name.

shape.gen, shape.env
The shape for genotype and environment indication in the biplot. Defaults to
shape.gen = 21 (circle) for genotypes and shape.env = 23 (rhombus) for envi-
ronments. Values must be between 21-25: 21 (circle), 22 (square), 23 (rhom-
bus), 24 (up triangle), and 25 (low triangle).

line.type.gen The line type to highlith the genotype’s vectors. Defaults to line.type.gen == "dotted.

size.shape The size of the shape (both for genotypes and environments). Defaults to 2.2.

size.shape.win The size of the shape for winners genotypes when type = 3. Defaults to 3.2.
size.stroke, col.stroke

The width and color of the border, respectively. Default to size.stroke =
0.3 and col.stroke = "black". The size of the shape will be size.shape
+ size.stroke

col.gen, col.env, col.line
Color for genotype/environment labels and for the line that passes through the
biplot origin. Defaults to col.gen = 'blue', col.env = 'forestgreen', and
col.line = 'forestgreen'.

178 plot.gge

col.alpha The alpha value for the color. Defaults to 1. Values must be between 0 (full
transparency) to 1 (full color).

col.circle, col.alpha.circle
The color and alpha values for the circle lines. Defaults to 'gray' and 0.4,
respectively.

leg.lab The labs of legend. Defaults to NULL is c('Env', 'Gen').
size.text.gen, size.text.env, size.text.lab

The size of the text for genotypes, environments and labels, respectively.

size.text.win The text size to use for winner genotypes where type = 3 and for the two se-
lected genotypes where type = 9. Defaults to 4.5.

size.line The size of the line in biplots (Both for segments and circles).

axis_expand multiplication factor to expand the axis limits by to enable fitting of labels. De-
faults to 1.2

title Logical values (Defaults to TRUE) to include automatically generated informa-
tion in the plot such as singular value partitioning, scaling and centering.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

... Currently not used.

Value

A ggplot2-based biplot.

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and
agronomists. CRC Press.

Examples

library(metan)
mod <- gge(data_ge, ENV, GEN, GY)
plot(mod)
plot(mod,

type = 2,
col.gen = 'blue',
col.env = 'red',
size.text.gen = 2)

plot.mgidi 179

plot.mgidi Plot the multi-trait genotype-ideotype distance index

Description

Makes a radar plot showing the multi-trait genotype-ideotype distance index

Usage

S3 method for class 'mgidi'
plot(
x,
SI = 15,
radar = TRUE,
type = "index",
position = "fill",
rotate = FALSE,
genotypes = "selected",
n.dodge = 1,
check.overlap = FALSE,
x.lab = NULL,
y.lab = NULL,
title = NULL,
size.point = 2.5,
size.line = 0.7,
size.text = 3.5,
width.bar = 0.75,
col.sel = "red",
col.nonsel = "gray",
legend.position = "bottom",
...

)

Arguments

x An object of class mgidi

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

radar Logical argument. If true (default) a radar plot is generated after using coord_polar().

type The type of the plot. Defaults to "index". Use type = "contribution" to
show the contribution of each factor to the MGIDI index of the selected geno-
types/treatments.

position The position adjustment when type = "contribution". Defaults to "fill",
which shows relative proportions at each trait by stacking the bars and then
standardizing each bar to have the same height. Use position = "stack" to
plot the MGIDI index for each genotype/treatment.

180 plot.mgidi

rotate Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and
value in the x axis.

genotypes When type = "contribution" defines the genotypes to be shown in the plot.
By default (genotypes = "selected" only selected genotypes are shown. Use
genotypes = "all" to plot the contribution for all genotypes.)

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

x.lab, y.lab The labels for the axes x and y, respectively. x label is set to null when a radar
plot is produced.

title The plot title when type = "contribution".

size.point The size of the point in graphic. Defaults to 2.5.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

width.bar The width of the bars if type = "contribution". Defaults to 0.75.

col.sel The colour for selected genotypes. Defaults to "red".

col.nonsel The colour for nonselected genotypes. Defaults to "gray".
legend.position

The position of the legend.

... Other arguments to be passed from ggplot2::theme().

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- gamem(data_g,

gen = GEN,
rep = REP,
resp = c(KW, NR, NKE, NKR))

mgidi_index <- mgidi(model)
plot(mgidi_index)

plot.mtmps 181

plot.mtmps Plot the multi-trait stability index

Description

Makes a radar plot showing the multitrait stability index proposed by Olivoto et al. (2019)

Usage

S3 method for class 'mtmps'
plot(
x,
SI = 15,
type = "index",
position = "fill",
genotypes = "selected",
title = TRUE,
radar = TRUE,
arrange.label = FALSE,
x.lab = NULL,
y.lab = NULL,
size.point = 2.5,
size.line = 0.7,
size.text = 10,
width.bar = 0.75,
n.dodge = 1,
check.overlap = FALSE,
invert = FALSE,
col.sel = "red",
col.nonsel = "black",
legend.position = "bottom",
...

)

Arguments

x An object computed with mps().

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

type The type of the plot. Defaults to "index". Use type = "contribution" to show
the contribution of each factor to the MTMPS index of the selected genotypes.

position The position adjustment when type = "contribution". Defaults to "fill",
which shows relative proportions at each trait by stacking the bars and then
standardizing each bar to have the same height. Use position = "stack" to
plot the MGIDI index for each genotype.

182 plot.mtmps

genotypes When type = "contribution" defines the genotypes to be shown in the plot.
By default (genotypes = "selected" only selected genotypes are shown. Use
genotypes = "all" to plot the contribution for all genotypes.)

title Logical values (Defaults to TRUE) to include automatically generated titles.

radar Logical argument. If true (default) a radar plot is generated after using coord_polar().

arrange.label Logical argument. If TRUE, the labels are arranged to avoid text overlapping.
This becomes useful when the number of genotypes is large, say, more than 30.

x.lab, y.lab The labels for the axes x and y, respectively. x label is set to null when a radar
plot is produced.

size.point The size of the point in graphic. Defaults to 2.5.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

width.bar The width of the bars if type = "contribution". Defaults to 0.75.

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

invert Logical argument. If TRUE, rotate the plot.

col.sel The colour for selected genotypes. Defaults to "red".

col.nonsel The colour for nonselected genotypes. Defaults to "black".
legend.position

The position of the legend.

... Other arguments to be passed from ggplot2::theme().

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and
stability in multi-environment trials II: Selection based on multiple traits. Agron. J. (in press).

Examples

library(metan)
model <-
mps(data_ge,

env = ENV,
gen = GEN,
rep = REP,

plot.mtsi 183

resp = everything())
selection <- mtmps(model)
plot(selection)

plot.mtsi Plot the multi-trait stability index

Description

Makes a radar plot showing the multitrait stability index proposed by Olivoto et al. (2019)

Usage

S3 method for class 'mtsi'
plot(
x,
SI = 15,
type = "index",
position = "fill",
genotypes = "selected",
title = TRUE,
radar = TRUE,
x.lab = NULL,
y.lab = NULL,
size.point = 2.5,
size.line = 0.7,
size.text = 3.5,
width.bar = 0.75,
n.dodge = 1,
check.overlap = FALSE,
invert = FALSE,
col.sel = "red",
col.nonsel = "black",
legend.position = "bottom",
...

)

Arguments

x An object of class mtsi

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

type The type of the plot. Defaults to "index". Use type = "contribution" to show
the contribution of each factor to the MGIDI index of the selected genotypes.

184 plot.mtsi

position The position adjustment when type = "contribution". Defaults to "fill",
which shows relative proportions at each trait by stacking the bars and then
standardizing each bar to have the same height. Use position = "stack" to
plot the MGIDI index for each genotype.

genotypes When type = "contribution" defines the genotypes to be shown in the plot.
By default (genotypes = "selected" only selected genotypes are shown. Use
genotypes = "all" to plot the contribution for all genotypes.)

title Logical values (Defaults to TRUE) to include automatically generated titles.

radar Logical argument. If true (default) a radar plot is generated after using coord_polar().

x.lab, y.lab The labels for the axes x and y, respectively. x label is set to null when a radar
plot is produced.

size.point The size of the point in graphic. Defaults to 2.5.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

width.bar The width of the bars if type = "contribution". Defaults to 0.75.

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

invert Logical argument. If TRUE, rotate the plot.

col.sel The colour for selected genotypes. Defaults to "red".

col.nonsel The colour for nonselected genotypes. Defaults to "black".
legend.position

The position of the legend.

... Other arguments to be passed from ggplot2::theme().

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, B.G. Sari, and M.I. Diel. 2019. Mean performance and
stability in multi-environment trials II: Selection based on multiple traits. Agron. J. (in press).

Examples

library(metan)
mtsi_model <- waasb(data_ge, ENV, GEN, REP, resp = c(GY, HM))
mtsi_index <- mtsi(mtsi_model)
plot(mtsi_index)

plot.path_coeff 185

plot.path_coeff Plots an object of class path_coeff

Description

Plots an object generated by path_coeff(). Options includes the path coefficients, variance in-
flaction factor and the beta values with different values of ’k’ values added to the diagonal of the
correlation matrix of explanatory traits. See more on Details section.

Usage

S3 method for class 'path_coeff'
plot(
x,
which = "coef",
size.text.plot = 4,
size.text.labels = 10,
digits = 3,
...

)

Arguments

x An object of class path_coeff or group_path.

which Which to plot: one of 'coef', 'vif', or 'betas'.
size.text.plot, size.text.labels

The size of the text for plot area and labels, respectively.

digits The significant digits to be shown.

... Further arguments passed on to ggplot2::theme().

Details

The plot which = "coef" (default) is interpreted as follows:

• The direct effects are shown in the diagonal (highlighted with a thicker line). In the example,
the direct effect of NKE on KW is 0.718.

• The indirect effects are shown in the line. In the example, the indirect effect of EH on KW
through TKW is 0.396.

• The linear correlation (direct + indirect) is shown in the last column.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

186 plot.performs_ammi

Examples

library(metan)

KW as dependent trait and all others as predictors
PH, EH, NKE, and TKW as predictors

pcoeff <-
path_coeff(data_ge2,

resp = KW,
pred = c(PH, EH, NKE, TKW))

plot(pcoeff)
plot(pcoeff, which = "vif")
plot(pcoeff, which = "betas")

plot.performs_ammi Several types of residual plots

Description

Residual plots for a output model of class performs_ammi. Seven types of plots are produced: (1)
Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized resid-
uals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals
and (6) standardized residuals vs observation order, and (7) 1:1 line plot.

Usage

S3 method for class 'performs_ammi'
plot(x, ...)

Arguments

x An object of class performs_ammi.

... Additional arguments passed on to the function residual_plots()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,

which = c(3, 5),
nrow = 2,
labels = TRUE,

plot.resp_surf 187

size.lab.out = 4)

plot.resp_surf Plot the response surface model

Description

Plot the response surface model using a contour plot

Usage

S3 method for class 'resp_surf'
plot(
x,
xlab = NULL,
ylab = NULL,
resolution = 100,
bins = 10,
plot_theme = theme_metan(),
...

)

Arguments

x An object of class resp_surf

xlab, ylab The label for the x and y axis, respectively. Defaults to original variable names.

resolution The resolution of the contour plot. Defaults to 100. higher values produce high-
resolution plots but may increase the computation time.

bins The number of bins shown in the plot. Defaults to 10.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

... Currently not used

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

188 plot.sh

Examples

library(metan)
A small toy example

df <- data.frame(
expand.grid(x = seq(0, 4, by = 1),

y = seq(0, 4, by = 1)),
z = c(10, 11, 12, 11, 10,

14, 15, 16, 15, 14,
16, 17, 18, 17, 16,
14, 15, 16, 15, 14,
10, 11, 12, 11, 10)

)
mod <- resp_surf(df, x, y, resp = z)
plot(mod)

plot.sh Plot the Smith-Hazel index

Description

Makes a radar plot showing the individual genetic worth for the Smith-Hazel index

Usage

S3 method for class 'sh'
plot(
x,
SI = 15,
radar = TRUE,
arrange.label = FALSE,
size.point = 2.5,
size.line = 0.7,
size.text = 10,
col.sel = "red",
col.nonsel = "black",
...

)

Arguments

x An object of class sh

SI An integer (0-100). The selection intensity in percentage of the total number of
genotypes.

radar Logical argument. If true (default) a radar plot is generated after using coord_polar().

plot.waas 189

arrange.label Logical argument. If TRUE, the labels are arranged to avoid text overlapping.
This becomes useful when the number of genotypes is large, say, more than 30.

size.point The size of the point in graphic. Defaults to 2.5.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

col.sel The colour for selected genotypes. Defaults to "red".

col.nonsel The colour for nonselected genotypes. Defaults to "black".

... Other arguments to be passed from ggplot2::theme().

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov

index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))
plot(index)

plot.waas Several types of residual plots

Description

Residual plots for a output model of class waas. Seven types of plots are produced: (1) Residuals
vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized residuals vs
Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals and (6)
standardized residuals vs observation order, and (7) 1:1 line plot.

Usage

S3 method for class 'waas'
plot(x, ...)

190 plot.waasb

Arguments

x An object of class waas.

... Additional arguments passed on to the function residual_plots()

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- waas(data_ge, ENV, GEN, REP, GY)
plot(model)
plot(model,

which = c(3, 5),
nrow = 2,
labels = TRUE,
size.lab.out = 4)

plot.waasb Several types of residual plots

Description

Residual plots for a output model of class waas and waasb. Six types of plots are produced: (1)
Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3) scale-location plot (standardized resid-
uals vs Fitted Values), (4) standardized residuals vs Factor-levels, (5) Histogram of raw residuals
and (6) standardized residuals vs observation order. For a waasb object, normal Q-Q plot for random
effects may also be obtained declaring type = 're'

Usage

S3 method for class 'waasb'
plot(
x,
var = 1,
type = "res",
position = "fill",
trait.levels = NULL,
percent = TRUE,
percent.digits = 2,
size.text.percent = 3.5,
rotate = FALSE,
conf = 0.95,
out = "print",

plot.waasb 191

n.dodge = 1,
check.overlap = FALSE,
labels = FALSE,
plot_theme = theme_metan(),
alpha = 0.2,
fill.hist = "gray",
col.hist = "black",
col.point = "black",
col.line = "red",
col.lab.out = "red",
size.line = 0.7,
size.text = 10,
width.bar = 0.75,
size.lab.out = 2.5,
size.tex.lab = 10,
size.shape = 1.5,
bins = 30,
which = c(1:4),
ncol = NULL,
nrow = NULL,
...

)

Arguments

x An object of class waasb.

var The variable to plot. Defaults to var = 1 the first variable of x.

type One of the "res" to plot the model residuals (default), type = 're' to plot nor-
mal Q-Q plots for the random effects, or "vcomp" to create a bar plot with the
variance components.

position The position adjustment when type = "vcomp". Defaults to "fill", which
shows relative proportions at each trait by stacking the bars and then standard-
izing each bar to have the same height. Use position = "stack" to plot the
phenotypic variance for each trait.

trait.levels By default, variables are ordered in the x-axis by alphabetic order. If a plot
with two variables (eg., "GY" and "PH") "PH" should appers before "GY", one
can use a comma-separated vector of variable names to relevel the variable’s
position in the plot (eg., trait.levels = "PH, GY").

percent If TRUE (default) shows the y-axis as percent and the percentage values within
each bar.

percent.digits The significant figures for the percentage values. Defaults to 2.
size.text.percent

The size of the text for the percentage values. Defaults to 3.5.

rotate Logical argument. If rotate = TRUE the plot is rotated, i.e., traits in y axis and
value in the x axis.

conf Level of confidence interval to use in the Q-Q plot (0.95 by default).

192 plot.waasb

out How the output is returned. Must be one of the ’print’ (default) or ’return’.

n.dodge The number of rows that should be used to render the x labels. This is useful for
displaying labels that would otherwise overlap.

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

labels Logical argument. If TRUE labels the points outside confidence interval limits.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

alpha The transparency of confidence band in the Q-Q plot. Must be a number between
0 (opaque) and 1 (full transparency).

fill.hist The color to fill the histogram. Default is ’gray’.

col.hist The color of the border of the the histogram. Default is ’black’.

col.point The color of the points in the graphic. Default is ’black’.

col.line The color of the lines in the graphic. Default is ’red’.

col.lab.out The color of the labels for the ’outlying’ points.

size.line The size of the line in graphic. Defaults to 0.7.

size.text The size for the text in the plot. Defaults to 10.

width.bar The width of the bars if type = "contribution".

size.lab.out The size of the labels for the ’outlying’ points.

size.tex.lab The size of the text in axis text and labels.

size.shape The size of the shape in the plots.

bins The number of bins to use in the histogram. Default is 30.

which Which graphics should be plotted. Default is which = c(1:4) that means that
the first four graphics will be plotted.

ncol, nrow The number of columns and rows of the plot pannel. Defaults to NULL

... Additional arguments passed on to the function patchwork::wrap_plots().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
x <- gamem_met(data_ge,

gen = GEN,
env = ENV,
rep = REP,
resp = everything())

plot(x)

plot.wsmp 193

plot.wsmp Plot heat maps with genotype ranking

Description

Plot heat maps with genotype ranking in two ways.

Usage

S3 method for class 'wsmp'
plot(x, var = 1, type = 1, y.lab = NULL, x.lab = NULL, size.lab = 12, ...)

Arguments

x An object returned by the function wsmp.

var The variable to plot. Defaults to var = 1 the first variable of x.
type 1 = Heat map Ranks: this graphic shows the genotype ranking considering

the WAASB index estimated with different numbers of Principal Components;
2 = Heat map WAASY-GY ratio: this graphic shows the genotype ranking
considering the different combinations in the WAASB/GY ratio.

y.lab The label of y axis. Default is ’Genotypes’.

x.lab The label of x axis. Default is ’Number of axes’.

size.lab The size of the labels.

... Currently not used.

Details

The first type of heatmap shows the genotype ranking depending on the number of principal compo-
nent axis used for estimating the WAASB index. The second type of heatmap shows the genotype
ranking depending on the WAASB/GY ratio. The ranks obtained with a ratio of 100/0 considers
exclusively the stability for the genotype ranking. On the other hand, a ratio of 0/100 considers
exclusively the productivity for the genotype ranking. Four clusters of genotypes are shown by
label colors (red) unproductive and unstable genotypes; (blue) productive, but unstable genotypes;
(black) stable, but unproductive genotypes; and (green), productive and stable genotypes.

Value

An object of class gg.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

194 plot_blup

Examples

library(metan)
model <- waasb(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH) %>%

wsmp()

p1 <- plot(model)
p2 <- plot(model, type = 2)
arrange_ggplot(p1, p2, ncol = 1)

plot_blup Plot the BLUPs for genotypes

Description

[Stable]
Plot the predicted BLUP of the genotypes.

Usage

plot_blup(
x,
var = 1,
which = "gen",
ncol = NULL,
nrow = NULL,
prob = 0.05,
export = FALSE,
file.type = "pdf",
file.name = NULL,
plot_theme = theme_metan(),
width = 6,
height = 6,
err.bar = TRUE,
size.err.bar = 0.5,
size.shape = 3.5,
size.tex.lab = 12,
height.err.bar = 0.3,
x.lim = NULL,
x.breaks = waiver(),
col.shape = c("blue", "red"),
y.lab = "Genotypes",

plot_blup 195

x.lab = NULL,
n.dodge = 1,
check.overlap = FALSE,
panel.spacing = 0.15,
resolution = 300,
...

)

Arguments

x The waasb object

var The variable to plot. Defaults to var = 1 the first variable of x.

which Which plot to shown. If which = "gen" (default) plots the BLUPs for genotypes.
To create a plot showing the BLUPs for genotype-environment combinations,
use which = "ge".

ncol, nrow The number of columns and rows, respectively, to be shown in the plot when
which = "ge".

prob The probability error for constructing confidence interval.

export Export (or not) the plot. Default is TRUE.

file.type If export = TRUE, define the type of file to be exported. Default is pdf, Graphic
can also be exported in *.tiff format by declaring file.type = "tiff".

file.name The name of the file for exportation, default is NULL, i.e. the files are automati-
cally named.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

width The width "inch" of the plot. Default is 6.

height The height "inch" of the plot. Default is 6.

err.bar Logical value to indicate if an error bar is shown. Defaults to TRUE.

size.err.bar The size of the error bar for the plot. Default is 0.5.

size.shape The size of the shape (both for genotypes and environments). Default is 3.5.

size.tex.lab The size of the text in axis text and labels.

height.err.bar The height for error bar. Default is 0.3.

x.lim The range of x-axis. Default is NULL (maximum and minimum values of the data
set). New arguments can be inserted as x.lim = c(x.min, x.max).

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

col.shape A vector of length 2 that contains the color of shapes for genotypes above and
below of the mean, respectively. Default is c("blue", "red").

y.lab The label of the y-axis in the plot. Default is "Genotypes".

x.lab The label of the x-axis in the plot. Default is NULL, i.e., the name of the selected
variable.

n.dodge The number of rows that should be used to render the Y labels. This is useful
for displaying labels that would otherwise overlap.

196 plot_ci

check.overlap Silently remove overlapping labels, (recursively) prioritizing the first, last, and
middle labels.

panel.spacing Defines the spacing between panels when which = "ge".

resolution The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-
fault is 300 (300 dpi)

... Currently not used.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

plot_scores(), plot_waasby()

Examples

library(metan)
BLUP <- waasb(data_ge2,

resp = PH,
gen = GEN,
env = ENV,
rep = REP)

plot_blup(BLUP)
plot_blup(BLUP, which = "ge")

plot_ci Plot the confidence interval for correlation

Description

[Stable]

This function plots the 95% confidence interval for Pearson’s correlation coefficient generated by
the function corr_ci.

plot_ci 197

Usage

plot_ci(
object,
fill = NULL,
position.fill = 0.3,
x.lab = NULL,
y.lab = NULL,
y.lim = NULL,
y.breaks = waiver(),
shape = 21,
col.shape = "black",
fill.shape = "orange",
size.shape = 2.5,
width.errbar = 0.2,
main = TRUE,
invert.axis = TRUE,
reorder = TRUE,
legend.position = "bottom",
plot_theme = theme_metan()

)

Arguments

object An object generate by the function corr_ci()

fill If corr_ci() is computed with the argument by use fill to fill the shape by
each level of the grouping variable by.

position.fill The position of shapes and errorbar when fill is used. Defaults to 0.3.

x.lab The label of x-axis, set to ’Pairwise combinations’. New arguments can be
inserted as x.lab = 'my label'.

y.lab The label of y-axis, set to ’Pearson’s correlation coefficient’ New arguments can
be inserted as y.lab = 'my label'.

y.lim The range of x-axis. Default is NULL. The same arguments than x.lim can be
used.

y.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. The
same arguments than x.breaks can be used.

shape The shape point to represent the correlation coefficient. Default is 21 (circle).
Values must be between 21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up
triangle), and 25 (low triangle).

col.shape The color for the shape edge. Set to black.

fill.shape The color to fill the shape. Set to orange.

size.shape The size for the shape point. Set to 2.5.

width.errbar The width for the errorbar showing the CI.

main The title of the plot. Set to main = FALSE to ommite the plot title.

invert.axis Should the names of the pairwise correlation appear in the y-axis?

198 plot_eigen

reorder Logical argument. If TRUE (default) the pairwise combinations are reordered
according to the correlation coefficient.

legend.position

The position of the legend when using fill argument. Defaults to "bottom".

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

Value

An object of class gg, ggplot.

Examples

library(metan)
library(dplyr)
Traits that contains "E"
data_ge2 %>%

select(contains('E')) %>%
corr_ci() %>%
plot_ci()

Group by environment
Traits PH, EH, EP, EL, and ED
Select only correlations with PH

data_ge2 %>%
corr_ci(PH, EP, EL, ED, CW,

sel.var = "PH",
by = ENV) %>%

plot_ci(fill = ENV)

plot_eigen Plot the eigenvalues

Description

[Stable]
Plot the eigenvalues for from singular value decomposition of BLUP interaction effects matrix.

Usage

plot_eigen(
x,
var = 1,
export = FALSE,
plot_theme = theme_metan(),
file.type = "pdf",

plot_eigen 199

file.name = NULL,
width = 6,
height = 6,
size.shape = 3.5,
size.line = 1,
size.tex.lab = 12,
y.lab = "Eigenvalue",
y2.lab = "Accumulated variance",
x.lab = "Number of multiplicative terms",
resolution = 300,
...

)

Arguments

x The waasb object

var The variable to plot. Defaults to var = 1 the first variable of x.

export Export (or not) the plot. Default is TRUE.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

file.type If export = TRUE, define the type of file to be exported. Default is pdf, Graphic
can also be exported in *.tiff format by declaring file.type = "tiff".

file.name The name of the file for exportation, default is NULL, i.e. the files are automati-
cally named.

width The width "inch" of the plot. Default is 6.

height The height "inch" of the plot. Default is 6.

size.shape The size of the shape. Default is 3.5.

size.line The size of the line. Default is 1.

size.tex.lab The size of the text in axis text and labels.

y.lab The label of the y-axis in the plot. Default is "Eigenvalue".

y2.lab The label of the second y-axis in the plot. Default is "Accumulated variance".

x.lab The label of the x-axis in the plot. Default is "Number of multiplicative
terms".

resolution The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-
fault is 300 (300 dpi)

... Currently not used.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

200 plot_scores

See Also

plot_scores(), plot_waasby()

Examples

library(metan)
BLUP <- waasb(data_ge,

resp = c(GY, HM),
gen = GEN,
env = ENV,
rep = REP)

plot_eigen(BLUP)

plot_scores Plot scores in different graphical interpretations

Description

[Stable]
Plot scores of genotypes and environments in different graphical interpretations.

Biplots type 1 and 2 are well known in AMMI analysis. In the plot type 3, the scores of both
genotypes and environments are plotted considering the response variable and the WAASB, an
stability index that considers all significant principal component axis of traditional AMMI models
or all principal component axis estimated with BLUP-interaction effects (Olivoto et al. 2019). Plot
type 4 may be used to better understand the well known ’which-won-where’ pattern, facilitating
the recommendation of appropriate genotypes targeted for specific environments, thus allowing the
exploitation of narrow adaptations.

Usage

plot_scores(
x,
var = 1,
type = 1,
first = "PC1",
second = "PC2",
repel = TRUE,
repulsion = 1,
max_overlaps = 20,
polygon = FALSE,
title = TRUE,
plot_theme = theme_metan(),
axis.expand = 1.1,
x.lim = NULL,

plot_scores 201

y.lim = NULL,
x.breaks = waiver(),
y.breaks = waiver(),
x.lab = NULL,
y.lab = NULL,
shape.gen = 21,
shape.env = 23,
size.shape.gen = 2.2,
size.shape.env = 2.2,
size.bor.tick = 0.1,
size.tex.lab = 12,
size.tex.gen = 3.5,
size.tex.env = 3.5,
size.line = 0.5,
size.segm.line = 0.5,
col.bor.gen = "black",
col.bor.env = "black",
col.line = "black",
col.gen = "blue",
col.env = "forestgreen",
col.alpha.gen = 1,
col.alpha.env = 1,
col.segm.gen = transparent_color(),
col.segm.env = "forestgreen",
highlight = NULL,
col.highlight = "red",
col.alpha.highlight = 1,
size.tex.highlight = 5.5,
size.shape.highlight = 3.2,
leg.lab = c("Env", "Gen"),
line.type = "solid",
line.alpha = 0.9,
resolution = deprecated(),
file.type = "png",
export = FALSE,
file.name = NULL,
width = 8,
height = 7,
color = TRUE,
...

)

Arguments

x An object fitted with the functions performs_ammi(), waas(), waas_means(),
or waasb().

var The variable to plot. Defaults to var = 1 the first variable of x.

type type of biplot to produce

202 plot_scores

• type = 1 The default. Produces an AMMI1 biplot (Y x PC1) to make infer-
ences related to stability and productivity.

• type = 2 Produces an AMMI2 biplot (PC1 x PC2) to make inferences re-
lated to the interaction effects. Use the arguments first or second to
change the default IPCA shown in the plot.

• type = 3 Valid for objects of class waas or waasb, produces a biplot show-
ing the GY x WAASB.

• type = 4 Produces a plot with the Nominal yield x Environment PC.

first, second The IPCA to be shown in the first (x) and second (y) axis. By default, IPCA1 is
shown in the x axis and IPCA2 in the y axis. For example, use second = "PC3"
to shown the IPCA3 in the y axis.

repel If TRUE (default), the text labels repel away from each other and away from the
data points.

repulsion Force of repulsion between overlapping text labels. Defaults to 1.

max_overlaps Exclude text labels that overlap too many things. Defaults to 20.

polygon Logical argument. If TRUE, a polygon is drawn when type = 2.

title Logical values (Defaults to TRUE) to include automatically generated titles

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

axis.expand Multiplication factor to expand the axis limits by to enable fitting of labels.
Default is 1.1.

x.lim, y.lim The range of x and y axes, respectively. Default is NULL (maximum and mini-
mum values of the data set). New values can be inserted as x.lim = c(x.min,
x.max) or y.lim = c(y.min, y.max).

x.breaks, y.breaks
The breaks to be plotted in the x and y axes, respectively. Defaults to waiver()
(automatic breaks). New values can be inserted, for example, as x.breaks =
c(0.1, 0.2, 0.3) or x.breaks = seq(0, 1, by = 0.2)

x.lab, y.lab The label of x and y axes, respectively. Defaults to NULL, i.e., each plot has a
default axis label. New values can be inserted as x.lab = 'my label'.

shape.gen, shape.env
The shape for genotypes and environments indication in the biplot. Default is
21 (circle) for genotypes and 23 (diamond) for environments. Values must be
between 21-25: 21 (circle), 22 (square), 23 (diamond), 24 (up triangle), and 25
(low triangle).

size.shape.gen, size.shape.env
The size of the shapes for genotypes and environments respectively. Defaults to
2.2.

size.bor.tick The size of tick of shape. Default is 0.1. The size of the shape will be max(size.shape.gen,
size.shape.env) + size.bor.tick

size.tex.lab, size.tex.gen, size.tex.env
The size of the text for axis labels (Defaults to 12), genotypes labels, and envi-
ronments labels (Defaults to 3.5).

size.line The size of the line that indicate the means in the biplot. Default is 0.5.

plot_scores 203

size.segm.line The size of the segment that start in the origin of the biplot and end in the scores
values. Default is 0.5.

col.bor.gen, col.bor.env
The color of the shape’s border for genotypes and environments, respectively.

col.line The color of the line that indicate the means in the biplot. Default is 'gray'
col.gen, col.env

The shape color for genotypes (Defaults to 'blue') and environments ('forestgreen').
Must be length one or a vector of colors with the same length of the number of
genotypes/environments.

col.alpha.gen, col.alpha.env
The alpha value for the color for genotypes and environments, respectively. De-
faults to NA. Values must be between 0 (full transparency) to 1 (full color).

col.segm.gen, col.segm.env
The color of segment for genotypes (Defaults to transparent_color()) and
environments (Defaults to ’forestgreen’), respectively. Valid arguments for plots
with type = 1 or type = 2 graphics.

highlight Genotypes/environments to be highlight in the plot. Defaults to NULL.

col.highlight The color for shape/labels when a value is provided in highlight. Defaults to
"red".

col.alpha.highlight

The alpha value for the color of the highlighted genotypes. Defaults to 1.
size.tex.highlight

The size of the text for the highlighted genotypes. Defaults to 5.5.
size.shape.highlight

The size of the shape for the highlighted genotypes. Defaults to 3.2.

leg.lab The labs of legend. Default is Gen and Env.

line.type The type of the line that indicate the means in the biplot. Default is 'solid'.
Other values that can be attributed are: 'blank', no lines in the biplot, 'dashed', 'dotted', 'dotdash', 'longdash', and 'twodash'.

line.alpha The alpha value that combine the line with the background to create the appear-
ance of partial or full transparency. Default is 0.4. Values must be between ’0’
(full transparency) to ’1’ (full color).

resolution deprecated

file.type The type of file to be exported. Currently recognises the extensions eps/ps, tex,
pdf, jpeg, tiff, png (default), bmp, svg and wmf (windows only).

export Export (or not) the plot. Default is FALSE. If TRUE, calls the ggplot2::ggsave()
function.

file.name The name of the file for exportation, default is NULL, i.e. the files are automati-
cally named.

width The width ’inch’ of the plot. Default is 8.

height The height ’inch’ of the plot. Default is 7.

color Should type 4 plot have colors? Default to TRUE.

... Currently not used.

204 plot_scores

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

See Also

plot_eigen()

Examples

library(metan)
AMMI model
model <- waas(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

GY x PC1 for variable GY (default plot)
plot_scores(model)

PC1 x PC2 (variable HM)
#
plot_scores(model,

polygon = TRUE, # Draw a convex hull polygon
var = "HM", # or var = 2 to select variable
highlight = c("G1", "G2"), # Highlight genotypes 2 and 3
type = 2) # type of biplot

PC3 x PC4 (variable HM)
Change size of plot fonts and colors
Minimal theme
plot_scores(model,

var = "HM",
type = 2,
first = "PC3",
second = "PC4",
col.gen = "black",
col.env = "gray",
col.segm.env = "gray",
size.tex.gen = 5,
size.tex.env = 2,
size.tex.lab = 16,

https://doi.org/10.2134/agronj2019.03.0220

plot_waasby 205

plot_theme = theme_metan_minimal())

WAASB index
waasb_model <- waasb(data_ge, ENV, GEN, REP, GY)

GY x WAASB
Highlight genotypes 2 and 8
plot_scores(waasb_model,

type = 3,
highlight = c("G2", "G8"))

plot_waasby Plot WAASBY values for genotype ranking

Description

[Stable]

Plot heat maps with genotype ranking in two ways.

Usage

plot_waasby(
x,
var = 1,
export = F,
file.type = "pdf",
file.name = NULL,
plot_theme = theme_metan(),
width = 6,
height = 6,
size.shape = 3.5,
size.tex.lab = 12,
col.shape = c("blue", "red"),
x.lab = "WAASBY",
y.lab = "Genotypes",
x.breaks = waiver(),
resolution = 300,
...

)

Arguments

x The WAASBY object

var The variable to plot. Defaults to var = 1 the first variable of x.

export Export (or not) the plot. Default is T.

206 plot_waasby

file.type The type of file to be exported. Default is pdf, Graphic can also be exported in
*.tiff format by declaring file.type = "tiff".

file.name The name of the file for exportation, default is NULL, i.e. the files are automati-
cally named.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

width The width "inch" of the plot. Default is 8.

height The height "inch" of the plot. Default is 7.

size.shape The size of the shape in the plot. Default is 3.5.

size.tex.lab The size of the text in axis text and labels.

col.shape A vector of length 2 that contains the color of shapes for genotypes above and
below of the mean, respectively. Default is c("blue", "red").

x.lab The label of the x axis in the plot. Default is "WAASBY".

y.lab The label of the y axis in the plot. Default is "Genotypes".

x.breaks The breaks to be plotted in the x-axis. Default is authomatic breaks. New
arguments can be inserted as x.breaks = c(breaks)

resolution The resolution of the plot. Parameter valid if file.type = "tiff" is used. De-
fault is 300 (300 dpi)

... Currently not used.

Value

An object of class gg, ggplot.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

See Also

plot_scores()

Examples

library(metan)
library(ggplot2)
waasby <- waasb(data_ge,

resp = GY,
gen = GEN,
env = ENV,
rep = REP)

waasby2 <- waas(data_ge,
resp = GY,
gen = GEN,
env = ENV,
rep = REP)

plot_waasby(waasby)

predict.gamem 207

plot_waasby(waasby2) +
theme_gray() +
theme(legend.position = "bottom",

legend.background = element_blank(),
legend.title = element_blank(),
legend.direction = "horizontal")

predict.gamem Predict method for gamem fits

Description

Obtains predictions from an object fitted with gamem().

Usage

S3 method for class 'gamem'
predict(object, ...)

Arguments

object An object of class gamem

... Currently not used

Value

A tibble with the predicted values for each variable in the model

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- gamem(data_g,

gen = GEN,
rep = REP,
resp = everything())

predict(model)

208 predict.gge

predict.gge Predict a two-way table based on GGE model

Description

Predict the means for a genotype-vs-environment trial based on a Genotype plus Genotype-vs-
Environment interaction (GGE) model.

Usage

S3 method for class 'gge'
predict(object, naxis = 2, output = "wide", ...)

Arguments

object An object of class gge.

naxis The the number of principal components to be used in the prediction. Generally,
two axis may be used. In this case, the estimated values will be those shown in
the biplot.

output The type of output. It must be one of the 'long' (default) returning a long-
format table with the columns for environment (ENV), genotypes (GEN) and
response variable (Y); or 'wide' to return a two-way table with genotypes in
the row, environments in the columns, filled by the estimated values.

... Currently not used.

Details

This function is used to predict the response variable of a two-way table (for examples the yielding
of g genotypes in e environments) based on GGE model. This prediction is based on the number of
principal components used. For more details see Yan and Kang (2007).

Value

A two-way table with genotypes in rows and environments in columns if output = "wide" or a
long format (columns ENV, GEN and Y) if output = "long" with the predicted values by the GGE
model.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Yan, W., and M.S. Kang. 2003. GGE biplot analysis: a graphical tool for breeders, geneticists, and
agronomists. CRC Press.

predict.performs_ammi 209

Examples

library(metan)
mod <- gge(data_ge, GEN, ENV, c(GY, HM))
predict(mod)

predict.performs_ammi Predict the means of a performs_ammi object

Description

Predict the means of a performs_ammi object considering a specific number of axis.

Usage

S3 method for class 'performs_ammi'
predict(object, naxis = 2, ...)

Arguments

object An object of class performs_ammi

naxis The the number of axis to be use in the prediction. If object has more than one
variable, then naxis must be a vector.

... Additional parameter for the function

Details

This function is used to predict the response variable of a two-way table (for examples the yielding
of the i-th genotype in the j-th environment) based on AMMI model. This prediction is based
on the number of multiplicative terms used. If naxis = 0, only the main effects (AMMI0) are
used. In this case, the predicted mean will be the predicted value from OLS estimation. If naxis
= 1 the AMMI1 (with one multiplicative term) is used for predicting the response variable. If
naxis = min(gen-1;env-1), the AMMIF is fitted and the predicted value will be the cell mean,
i.e. the mean of R-replicates of the i-th genotype in the j-th environment. The number of axis to be
used must be carefully chosen. Procedures based on Postdictive success (such as Gollobs’s d.f.) or
Predictive success (such as cross-validation) should be used to do this. This package provide both.
performs_ammi() function compute traditional AMMI analysis showing the number of significant
axis. On the other hand, cv_ammif() function provide a cross-validation, estimating the RMSPD
of all AMMI-family models, based on resampling procedures.

Value

A list where each element is the predicted values by the AMMI model for each variable.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

210 predict.waas

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP,

resp = c(GY, HM))
Predict GY with 3 IPCA and HM with 1 IPCA
predict <- predict(model, naxis = c(3, 1))

predict.waas Predict the means of a waas object

Description

Predict the means of a waas object considering a specific number of axis.

Usage

S3 method for class 'waas'
predict(object, naxis = 2, ...)

Arguments

object An object of class waas

naxis The the number of axis to be use in the prediction. If object has more than one
variable, then naxis must be a vector.

... Additional parameter for the function

Details

This function is used to predict the response variable of a two-way table (for examples the yielding
of the i-th genotype in the j-th environment) based on AMMI model. This prediction is based
on the number of multiplicative terms used. If naxis = 0, only the main effects (AMMI0) are
used. In this case, the predicted mean will be the predicted value from OLS estimation. If naxis
= 1 the AMMI1 (with one multiplicative term) is used for predicting the response variable. If
naxis = min(gen-1;env-1), the AMMIF is fitted and the predicted value will be the cell mean,
i.e. the mean of R-replicates of the i-th genotype in the j-th environment. The number of axis
to be used must be carefully chosen. Procedures based on Postdictive success (such as Gollobs’s
d.f.) or Predictive sucess (such as cross-validation) should be used to do this. This package provide
both. waas() function compute traditional AMMI analysis showing the number of significant axis.
On the other hand, cv_ammif() function provide a cross-validation, estimating the RMSPD of all
AMMI-family models, based on resampling procedures.

Value

A list where each element is the predicted values by the AMMI model for each variable.

predict.waasb 211

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- waas(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

Predict GY with 3 IPCA and HM with 1 IPCA
predict <- predict(model, naxis = c(3, 1))
predict

predict.waasb Predict method for waasb fits

Description

Obtains predictions from an object fitted with waasb().

Usage

S3 method for class 'waasb'
predict(object, ...)

Arguments

object An object of class waasb

... Currently not used

Value

A tibble with the predicted values for each variable in the model

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

212 print.ammi_indexes

Examples

library(metan)
model <- waasb(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM))

predict(model)

print.ammi_indexes Print an object of class ammi_indexes

Description

Print the ammi_indexes object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'ammi_indexes'
print(x, which = "stats", export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class ammi_indexes.

which Which should be printed. Defaults to "stats". Other possible values are
"ranks" for genotype ranking and "ssi" for the simultaneous selection index.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, GY) %>%

ammi_indexes()
print(model)

print.Annicchiarico 213

print.Annicchiarico Print an object of class Annicchiarico

Description

Print the Annicchiarico object in two ways. By default, the results are shown in the R console.
The results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Annicchiarico'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The Annicchiarico x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Ann <- Annicchiarico(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH

)
print(Ann)

214 print.anova_joint

print.anova_ind Print an object of class anova_ind

Description

Print the anova_ind object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'anova_ind'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class anova_ind.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- data_ge %>% anova_ind(ENV, GEN, REP, c(GY, HM))
print(model)

print.anova_joint Print an object of class anova_joint

Description

Print the anova_joint object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'anova_joint'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

print.can_cor 215

Arguments

x An object of class anova_joint.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- data_ge %>% anova_joint(ENV, GEN, REP, c(GY, HM))
print(model)

print.can_cor Print an object of class can_cor

Description

Print an object of class can_cor object in two ways. By default, the results are shown in the R
console. The results can also be exported to the directory.

Usage

S3 method for class 'can_cor'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class can_cor.

export A logical argument. If TRUE|T, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

216 print.coincidence

Examples

library(metan)
cc <- can_corr(data_ge2,

FG = c(PH, EH, EP),
SG = c(EL, CL, CD, CW, KW, NR, TKW),
verbose = FALSE)

print(cc)

print.coincidence Print an object of class coincidence

Description

Print a coincidence object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory.

Usage

S3 method for class 'coincidence'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class coincidence.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
sel1 <- paste("G", 1:30, sep = "")
sel2 <- paste("G", 16:45, sep = "")
coinc <- coincidence_index(sel1 = sel1, sel2 = sel2, total = 150)
print(coinc)

print.colindiag 217

print.colindiag Print an object of class colindiag

Description

Print the colindiag object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'colindiag'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The object of class colindiag

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
col <- colindiag(data_ge2)
print(col)

print.corr_coef Print an object of class corr_coef

Description

Print the corr_coef object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'corr_coef'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

218 print.ecovalence

Arguments

x An object of class corr_coef

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::formatting()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
sel <- corr_coef(data_ge2, EP, EL, CD, CL)
print(sel)

print.ecovalence Print an object of class ecovalence

Description

Print the ecovalence object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'ecovalence'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The ecovalence x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

print.env_dissimilarity 219

Examples

library(metan)
eco <- ecovalence(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

print(eco)

print.env_dissimilarity

Print an object of class env_dissimilarity

Description

Print the env_dissimilarity object in two ways. By default, the results are shown in the R
console. The results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'env_dissimilarity'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class env_dissimilarity.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Currently not used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
mod <- env_dissimilarity(data_ge, ENV, GEN, REP, GY)
print(mod)

220 print.env_stratification

print.env_stratification

Print the env_stratification model

Description

Print an object of class ge_factanal in two ways. By default, the results are shown in the R
console. The results can also be exported to the directory.

Usage

S3 method for class 'env_stratification'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class env_stratification.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Currently not used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <-
env_stratification(data_ge,

env = ENV,
gen = GEN,
resp = GY)

print(model)

print.Fox 221

print.Fox Print an object of class Fox

Description

Print the Fox object in two ways. By default, the results are shown in the R console. The results can
also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Fox'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The Fox x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
library(metan)
out <- Fox(data_ge2, ENV, GEN, PH)
print(out)

print.gamem Print an object of class gamem

Description

Print the gamem object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory.

Usage

S3 method for class 'gamem'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

222 print.ge_factanal

Arguments

x An object fitted with the function gamem() .

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
alpha <- gamem(data_alpha,

gen = GEN,
rep = REP,
block = BLOCK,
resp = YIELD

)

print(alpha)

print.ge_factanal Print an object of class ge_factanal

Description

Print the ge_factanal object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory.

Usage

S3 method for class 'ge_factanal'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class ge_factanal.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

print.ge_reg 223

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

model <- ge_factanal(data_ge2,
env = ENV,
gen = GEN,
rep = REP,
resp = PH

)
print(model)

print.ge_reg Print an object of class ge_reg

Description

Print the ge_reg object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'ge_reg'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class ge_reg.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- ge_reg(data_ge2, ENV, GEN, REP, PH)
print(model)

224 print.ge_stats

print.ge_stats Print an object of class ge_stats

Description

Print the ge_stats object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'ge_stats'
print(x, what = "all", export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class ge_stats.

what What should be printed. what = "all" for both statistics and ranks, what =
"stats" for statistics, and what = "ranks" for ranks.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- ge_stats(data_ge, ENV, GEN, REP, GY)
print(model)

print.Huehn 225

print.Huehn Print an object ofclass Huehn

Description

Print the Huehn object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Huehn'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class Huehn.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- Huehn(data_ge2, ENV, GEN, PH)
print(model)

print.lpcor Print the partial correlation coefficients

Description

Print an object of class lpcor or or lpcor_group in two ways. By default, the results are shown in
the R console. The results can also be exported to the directory.

Usage

S3 method for class 'lpcor'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

226 print.mgidi

Arguments

x An object of class lpcor or lpcor_group.
export A logical argument. If TRUE, a *.txt file is exported to the working directory
file.name The name of the file if export = TRUE

digits The significant digits to be shown.
... Options used by the tibble package to format the output. See tibble::print()

for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
pcor <- lpcor(data_ge2, NR, NKR, NKE)
print(pcor)

Compute the correlations for each level of the factor ENV
lpc2 <- lpcor(data_ge2,

NR, NKR, NKE,
by = ENV)

print(lpc2)

print.mgidi Print an object of class mgidi Print a mgidi object in two ways. By
default, the results are shown in the R console. The results can also be
exported to the directory.

Description

Print an object of class mgidi Print a mgidi object in two ways. By default, the results are shown in
the R console. The results can also be exported to the directory.

Usage

S3 method for class 'mgidi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class mgidi.
export A logical argument. If TRUE|T, a *.txt file is exported to the working directory
file.name The name of the file if export = TRUE

digits The significant digits to be shown.
... Options used by the tibble package to format the output. See tibble::print()

for more details.

print.mtmps 227

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- gamem(data_g,

gen = GEN,
rep = REP,
resp = c(KW, NR, NKE, NKR))

mgidi_index <- mgidi(model)
print(mgidi_index)

print.mtmps Print an object of class mtmps

Description

Print a mtmps object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory.

Usage

S3 method for class 'mtmps'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class mtmps.

export A logical argument. If TRUE|T, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

228 print.mtsi

Examples

library(metan)
model <-
mps(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

selection <- mtmps(model)
print(selection)

print.mtsi Print an object of class mtsi

Description

Print a mtsi object in two ways. By default, the results are shown in the R console. The results can
also be exported to the directory.

Usage

S3 method for class 'mtsi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class mtsi.

export A logical argument. If TRUE|T, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Based on stability only
MTSI_MODEL <- waasb(data_ge,

resp = c(GY, HM),
gen = GEN,
env = ENV,
rep = REP

print.path_coeff 229

)

MTSI_index <- mtsi(MTSI_MODEL)
print(MTSI_index)

print.path_coeff Print an object of class path_coeff

Description

Print an object generated by the function ’path_coeff()’. By default, the results are shown in the R
console. The results can also be exported to the directory.

Usage

S3 method for class 'path_coeff'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class path_coeff or group_path.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)

KW as dependent trait and all others as predictors
pcoeff <- path_coeff(data_ge2, resp = KW)
print(pcoeff)

Call the algorithm for selecting a set of predictors
With minimal multicollinearity (no VIF larger than 5)
pcoeff2 <- path_coeff(data_ge2,

resp = KW,
brutstep = TRUE,
maxvif = 5)

print(pcoeff2)

230 print.plaisted_peterson

print.performs_ammi Print an object of class performs_ammi

Description

Print the performs_ammi object in two ways. By default, the results are shown in the R console.
The results can also be exported to the directory.

Usage

S3 method for class 'performs_ammi'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class performs_ammi.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP,

resp = c(GY, HM))
print(model)

print.plaisted_peterson

Print an object of class plaisted_peterson

Description

Print the plaisted_peterson object in two ways. By default, the results are shown in the R
console. The results can also be exported to the directory into a *.txt file.

print.Schmildt 231

Usage

S3 method for class 'plaisted_peterson'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The plaisted_peterson x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
eco <- ecovalence(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

print(eco)

print.Schmildt Print an object of class Schmildt

Description

Print the Schmildt object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Schmildt'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

232 print.sh

Arguments

x The Schmildt x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::formatting()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
Sch <- Schmildt(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

print(Sch)

print.sh Print an object of class sh

Description

Print a sh object in two ways. By default, the results are shown in the R console. The results can
also be exported to the directory.

Usage

S3 method for class 'sh'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class sh.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

print.Shukla 233

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov

index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))
print(index)

print.Shukla Print an object of class Shukla

Description

Print the Shukla object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Shukla'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x The Shukla x

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

234 print.superiority

Examples

library(metan)
eco <- Shukla(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH

)
print(eco)

print.superiority Print an object ofclass superiority

Description

Print the superiority object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'superiority'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class superiority.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- superiority(data_ge2, ENV, GEN, PH)
print(model)

print.Thennarasu 235

print.Thennarasu Print an object ofclass Thennarasu

Description

Print the Thennarasu object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory into a *.txt file.

Usage

S3 method for class 'Thennarasu'
print(x, export = FALSE, file.name = NULL, digits = 3, ...)

Arguments

x An object of class Thennarasu.

export A logical argument. If TRUE, a *.txt file is exported to the working directory.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- Thennarasu(data_ge2, ENV, GEN, PH)
print(model)

print.waas Print an object of class waas

Description

Print the waas object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory.

Usage

S3 method for class 'waas'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

236 print.waasb

Arguments

x An object of class waas.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- waas(data_ge,

resp = c(GY, HM),
gen = GEN,
env = ENV,
rep = REP

)
print(model)

print.waasb Print an object of class waasb

Description

Print a waasb object in two ways. By default, the results are shown in the R console. The results
can also be exported to the directory.

Usage

S3 method for class 'waasb'
print(x, export = FALSE, blup = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class waasb.

export A logical argument. If TRUE|T, a *.txt file is exported to the working directory

blup A logical argument. If TRUE|T, the blups are shown.

file.name The name of the file if export = TRUE

digits The significant digits to be shown.

... Options used by the tibble package to format the output. See tibble::print()
for more details.

print.waas_means 237

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- waasb(data_ge,

resp = c(GY, HM),
gen = GEN,
env = ENV,
rep = REP

)
print(model)

print.waas_means Print an object of class waas_means

Description

Print the waas_means object in two ways. By default, the results are shown in the R console. The
results can also be exported to the directory.

Usage

S3 method for class 'waas_means'
print(x, export = FALSE, file.name = NULL, digits = 4, ...)

Arguments

x An object of class waas_means.

export A logical argument. If TRUE, a *.txt file is exported to the working directory

file.name The name of the file if export = TRUE

digits The significant digits to be shown. See tibble::print() for more details.

... Currently not used.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

238 reorder_cormat

Examples

library(metan)
data_means <- mean_by(data_ge, ENV, GEN)
model <- waas_means(data_ge,

env = ENV,
gen = GEN,
resp = everything())

print(model)

reorder_cormat Reorder a correlation matrix

Description

[Stable]

Reorder the correlation matrix according to the correlation coefficient by using hclust for hierarchi-
cal clustering order. This is useful to identify the hidden pattern in the matrix.

Usage

reorder_cormat(x)

Arguments

x The correlation matrix

Value

The ordered correlation matrix

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
cor_mat <- corr_coef(data_ge2, PH, EH, CD, CL, ED, NKR)
cor_mat$cor
reorder_cormat(cor_mat$cor)

resca 239

resca Rescale a variable to have specified minimum and maximum values

Description

[Stable]
Helper function that rescales a continuous variable to have specified minimum and maximum val-
ues.

The function rescale a continuous variable as follows:

Rvi = (Nmax−Nmin)/(Omax−Omin) ∗ (Oi −Omax) +Nmax

Where Rvi is the rescaled value of the ith position of the variable/ vector; Nmax and Nmin are
the new maximum and minimum values; OmaxandOmin are the maximum and minimum values
of the original data, and Oi is the ith value of the original data.

There are basically two options to use resca to rescale a variable. The first is passing a data frame
to .data argument and selecting one or more variables to be scaled using The function will
return the original variables in .data plus the rescaled variable(s) with the prefix _res. By using
the function group_by from dplyr package it is possible to rescale the variable(s) within each level
of the grouping factor. The second option is pass a numeric vector in the argument values. The
output, of course, will be a numeric vector of rescaled values.

Usage

resca(
.data = NULL,
...,
values = NULL,
new_min = 0,
new_max = 100,
na.rm = TRUE,
keep = TRUE

)

Arguments

.data The dataset. Grouped data is allowed.

... Comma-separated list of unquoted variable names that will be rescaled.

values Optional vector of values to rescale

new_min The minimum value of the new scale. Default is 0.

new_max The maximum value of the new scale. Default is 100

na.rm Remove NA values? Default to TRUE.

keep Should all variables be kept after rescaling? If false, only rescaled variables will
be kept.

240 residual_plots

Value

A numeric vector if values is used as input data or a tibble if a data frame is used as input in .data.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
library(dplyr)
Rescale a numeric vector
resca(values = c(1:5))

Using a data frame
head(
resca(data_ge, GY, HM, new_min = 0, new_max = 1)

)

Rescale within factors;
Select variables that stats with 'N' and ends with 'L';
Compute the mean of these variables by ENV and GEN;
Rescale the variables that ends with 'L' whithin ENV;
data_ge2 %>%

select(ENV, GEN, starts_with("N"), ends_with("L")) %>%
mean_by(ENV, GEN) %>%
group_by(ENV) %>%
resca(ends_with("L")) %>%
head(n = 13)

residual_plots Several types of residual plots

Description

[Stable]

Residual plots for a output model of class performs_ammi, waas, anova_ind, and anova_joint.
Seven types of plots are produced: (1) Residuals vs fitted, (2) normal Q-Q plot for the residuals, (3)
scale-location plot (standardized residuals vs Fitted Values), (4) standardized residuals vs Factor-
levels, (5) Histogram of raw residuals and (6) standardized residuals vs observation order, and (7)
1:1 line plot

residual_plots 241

Usage

residual_plots(
x,
var = 1,
conf = 0.95,
labels = FALSE,
plot_theme = theme_metan(),
band.alpha = 0.2,
point.alpha = 0.8,
fill.hist = "gray",
col.hist = "black",
col.point = "black",
col.line = "red",
col.lab.out = "red",
size.lab.out = 2.5,
size.tex.lab = 10,
size.shape = 1.5,
bins = 30,
which = c(1:4),
ncol = NULL,
nrow = NULL,
...

)

Arguments

x An object of class performs_ammi, waas, anova_joint, or gafem

var The variable to plot. Defaults to var = 1 the first variable of x.

conf Level of confidence interval to use in the Q-Q plot (0.95 by default).

labels Logical argument. If TRUE labels the points outside confidence interval limits.

plot_theme The graphical theme of the plot. Default is plot_theme = theme_metan(). For
more details, see ggplot2::theme().

band.alpha, point.alpha
The transparency of confidence band in the Q-Q plot and the points, respectively.
Must be a number between 0 (opaque) and 1 (full transparency).

fill.hist The color to fill the histogram. Default is ’gray’.

col.hist The color of the border of the the histogram. Default is ’black’.

col.point The color of the points in the graphic. Default is ’black’.

col.line The color of the lines in the graphic. Default is ’red’.

col.lab.out The color of the labels for the ’outlying’ points.

size.lab.out The size of the labels for the ’outlying’ points.

size.tex.lab The size of the text in axis text and labels.

size.shape The size of the shape in the plots.

bins The number of bins to use in the histogram. Default is 30.

242 resp_surf

which Which graphics should be plotted. Default is which = c(1:4) that means that
the first four graphics will be plotted.

ncol, nrow The number of columns and rows of the plot pannel. Defaults to NULL

... Additional arguments passed on to the function patchwork::wrap_plots().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
model <- performs_ammi(data_ge, ENV, GEN, REP, GY)

Default plot
plot(model)

Normal Q-Q plot
Label possible outliers
plot(model,

which = 2,
labels = TRUE)

Residual vs fitted,
Normal Q-Q plot
Histogram of raw residuals
All in one row
plot(model,

which = c(1, 2, 5),
nrow = 1)

resp_surf Response surface model

Description

[Stable]
Compute a surface model and find the best combination of factor1 and factor2 to obtain the station-
ary point.

Usage

resp_surf(
.data,
factor1,
factor2,
rep = NULL,

Schmildt 243

resp,
prob = 0.05,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, factor1, factor2,
replication/block and response variable(s).

factor1 The first factor, for example, dose of Nitrogen.
factor2 The second factor, for example, dose of potassium.
rep The name of the column that contains the levels of the replications/blocks, if a

designed experiment was conducted. Defaults to NULL.
resp The response variable(s).
prob The probability error.
verbose If verbose = TRUE then some results are shown in the console.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
A small toy example

df <- data.frame(
expand.grid(x = seq(0, 4, by = 1),

y = seq(0, 4, by = 1)),
z = c(10, 11, 12, 11, 10,

14, 15, 16, 15, 14,
16, 17, 18, 17, 16,
14, 15, 16, 15, 14,
10, 11, 12, 11, 10)

)
mod <- resp_surf(df, x, y, resp = z)
plot(mod)

Schmildt Schmildt’s genotypic confidence index

Description

[Stable]
Stability analysis using the known genotypic confidence index (Annicchiarico, 1992) modified by
Schmildt et al. 2011.

244 Schmildt

Usage

Schmildt(.data, env, gen, rep, resp, prob = 0.05, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

prob The probability of error assumed.

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

A list where each element is the result for one variable and contains the following data frames:

• environments Contains the mean, environmental index and classification as favorables and
unfavorables environments.

• general Contains the genotypic confidence index considering all environments.

• favorable Contains the genotypic confidence index considering favorable environments.

• unfavorable Contains the genotypic confidence index considering unfavorable environments.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Annicchiarico, P. 1992. Cultivar adaptation and recommendation from alfalfa trials in Northern
Italy. J. Genet. Breed. 46:269-278.

Schmildt, E.R., A.L. Nascimento, C.D. Cruz, and J.A.R. Oliveira. 2011. Avaliacao de metodologias
de adaptabilidade e estabilidade de cultivares milho. Acta Sci. - Agron. 33:51-58. doi:10.4025/
actasciagron.v33i1.5817

See Also

superiority(), ecovalence(), ge_stats(), Annicchiarico()

https://doi.org/10.4025/actasciagron.v33i1.5817
https://doi.org/10.4025/actasciagron.v33i1.5817

Select_helper 245

Examples

library(metan)
Sch <- Schmildt(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

print(Sch)

Select_helper Select helper

Description

These functions allow you to select variables based operations with prefixes and suffixes and length
of names.

• difference_var(): Select variables that start with a prefix AND NOT end wiht a suffix.

• intersect_var(): Select variables that start with a prefix AND end wiht a suffix.

• union_var(): Select variables that start with a prefix OR end wiht a suffix.

• width_of(): Select variables with width of n.

• width_greater_than(): Select variables with width greater than n.

• width_less_than(): Select variables with width less than n.

• lower_case_only(): Select variables that contains lower case only (e.g., "env").

• upper_case_only(): Select variables that contains upper case only (e.g., "ENV").

• title_case_only(): Select variables that contains upper case in the first character only (e.g.,
"Env").

Usage

difference_var(prefix, suffix)

intersect_var(prefix, suffix)

union_var(prefix, suffix)

width_of(n, vars = peek_vars(fn = "width_of"))

width_greater_than(n, vars = peek_vars(fn = "width_greater_than"))

width_less_than(n, vars = peek_vars(fn = "width_less_than"))

lower_case_only(vars = peek_vars(fn = "lower_case_only"))

246 Select_helper

upper_case_only(vars = peek_vars(fn = "upper_case_only"))

title_case_only(vars = peek_vars(fn = "title_case_only"))

Arguments

prefix A prefix that start the variable name.

suffix A suffix that end the variable name.

n The length of variable names to select. For width_of() the selected variables
contains n characters. For width_greater_than() and width_less_than()
the selected variables contains greater and less characteres than n, respectively.

vars A character vector of variable names. When called from inside selecting func-
tions like select_cols() these are automatically set to the names of the table.

Examples

library(metan)

Select variables that start with "C" and not end with "D".
data_ge2 %>%
select_cols(difference_var("C", "D"))

Select variables that start with "C" and end with "D".
data_ge2 %>%
select_cols(intersect_var("C", "D"))

Select variables that start with "C" or end with "D".
data_ge2 %>%
select_cols(union_var("C", "D"))

Select variables with width name of 4
data_ge2 %>%
select_cols(width_of(4))

Select variables with width name greater than 2
data_ge2 %>%
select_cols(width_greater_than(2))

Select variables with width name less than 3
data_ge2 %>%
select_cols(width_less_than(3))

Creating data with messy column names
df <- head(data_ge, 3)
colnames(df) <- c("Env", "gen", "Rep", "GY", "hm")
select_cols(df, lower_case_only())
select_cols(df, upper_case_only())
select_cols(df, title_case_only())

select_pred 247

select_pred Selects a best subset of predictor variables.

Description

Selects among a set of covariates the best set of npred predictors for a given response trait resp
based on AIC values.

Usage

select_pred(.data, resp, covariates = NULL, npred)

Arguments

.data A data frame with the response variable and covariates.

resp The response variable.

covariates The covariates. Defaults to NULL. In this case, all numeric traits in .data,
except that in resp are selected. To select specific covariates from .data, use
a list of unquoted comma-separated variable names (e.g. traits = c(var1, var2,
var3)), an specific range of variables, (e.g. traits = c(var1:var3)), or even a
select helper like starts_with("N").

npred An integer specifying the size of the subset of predictors to be selected

Value

A list with the following elements:

• sel_mod An object of class lm that is the selected model.

• predictors The name of the selected predictors.

• AIC The Akaike’s Information Criterion for the selected model.

• pred_models The Akaike’s Information Criterion and the predictors selected in each step.

• predicted The predicted values considering the model in sel_mod.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
mod <- select_pred(data_ge2, resp = PH, npred = 10)
mod$predictors
mod$AIC

248 Shukla

Shukla Shukla’s stability variance parameter

Description

[Stable]

The function computes the Shukla’s stability variance parameter (1972) and uses the Kang’s non-
parametric stability (rank sum) to imcorporate the mean performance and stability into a single
selection criteria.

Usage

Shukla(.data, env, gen, rep, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class Shukla, which is a list containing the results for each variable used in the argu-
ment resp. For each variable, a tibble with the following columns is returned.

• GEN the genotype’s code.

• Y the mean for the response variable.

• ShuklaVar The Shukla’s stability variance parameter.

• rMean The rank for Y (decreasing).

• rShukaVar The rank for ShukaVar.

• ssiShukaVar The simultaneous selection index (ssiShukaV ar = rMean+ rShukaV ar).

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Smith_Hazel 249

References

Shukla, G.K. 1972. Some statistical aspects of partitioning genotype-environmental components of
variability. Heredity. 29:238-245. doi:10.1038/hdy.1972.87

Kang, M.S., and H.N. Pham. 1991. Simultaneous Selection for High Yielding and Stable Crop
Genotypes. Agron. J. 83:161. doi:10.2134/agronj1991.00021962008300010037x

Examples

library(metan)
out <- Shukla(data_ge2,

env = ENV,
gen = GEN,
rep = REP,
resp = PH)

Smith_Hazel Smith-Hazel index

Description

[Stable]
Computes the Smith (1936) and Hazel (1943) index given economic weights and phenotypic and
genotypic variance-covariance matrices. The Smith-Hazel index is computed as follows:

b = P−1Aw

where P and G are phenotypic and genetic covariance matrices, respectively, and b and w are
vectors of index coefficients and economic weightings, respectively.

The genetic worth I of an individual genotype based on traits x, y, ..., n, is calculated as:

I = bxGx + byGy + ...+ bnGn

where b the index coefficient for the traits x, y, ..., n, respectively, and G is the individual genotype
BLUPs for the traits x, y, ..., n, respectively.

Usage

Smith_Hazel(
.data,
use_data = "blup",
pcov = NULL,
gcov = NULL,
SI = 15,
weights = NULL

)

https://doi.org/10.1038/hdy.1972.87
https://doi.org/10.2134/agronj1991.00021962008300010037x

250 Smith_Hazel

Arguments

.data The input data. It can be either a two-way table with genotypes in rows and traits
in columns, or an object fitted with the function gamem(). Please, see Details
for more details.

use_data Define which data to use If .data is an object of class gamem. Defaults to
"blup" (the BLUPs for genotypes). Use "pheno" to use phenotypic means
instead BLUPs for computing the index.

pcov, gcov The phenotypic and genotypic variance-covariance matrix, respectively. De-
faults to NULL. If a two-way table is informed in .data these matrices are manda-
tory.

SI The selection intensity (percentage). Defaults to 20

weights The vector of economic weights. Defaults to a vector of 1s with the same length
of the number of traits.

Details

When using the phenotypic means in .data, be sure the genotype’s code are in rownames. If .data
is an object of class gamem them the BLUPs for each genotype are used to compute the index. In
this case, the genetic covariance components are estimated by mean cross products.

Value

An object of class hz containing:

• b: the vector of index coefficient.

• index: The genetic worth.

• sel_dif_trait: The selection differencial.

• sel_gen: The selected genotypes.

• gcov: The genotypic variance-covariance matrix

• pcov: The phenotypic variance-covariance matrix

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Smith, H.F. 1936. A discriminant function for plant selection. Ann. Eugen. 7:240-250. doi:10.1111/
j.14691809.1936.tb02143.x

Hazel, L.N. 1943. The genetic basis for constructing selection indexes. Genetics 28:476-90.
https://www.genetics.org/content/28/6/476.short

See Also

mtsi(), mgidi(), fai_blup()

https://doi.org/10.1111/j.1469-1809.1936.tb02143.x
https://doi.org/10.1111/j.1469-1809.1936.tb02143.x

solve_svd 251

Examples

vcov <- covcor_design(data_g, GEN, REP, everything())
means <- as.matrix(vcov$means)
pcov <- vcov$phen_cov
gcov <- vcov$geno_cov

index <- Smith_Hazel(means, pcov = pcov, gcov = gcov, weights = rep(1, 15))

solve_svd Pseudoinverse of a square matrix

Description

[Stable]

This function computes the Moore-Penrose pseudoinverse of a square matrix using singular value
decomposition.

Usage

solve_svd(x, tolerance = 2.220446e-16)

Arguments

x A square matrix

tolerance The tolerance to consider an eigenvalue equals to zero.

Value

A matrix with the same dimension of x.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

Examples

library(metan)
mat <- matrix(c(1, 4, 2, 8), ncol = 2)
det(mat)
solve_svd(mat)

252 split_factors

split_factors Split a data frame by factors

Description

[Stable]

Split a data frame into subsets grouping by one or more factors.

This function is used to split a data frame into a named list where each element is a level of the
grouping variable (or combination of grouping variables).

Usage

split_factors(.data, ..., keep_factors = FALSE)

as.split_factors(.data, keep_factors = FALSE)

is.split_factors(x)

Arguments

.data The data that will be split. Must contain at least one grouping variable.

... Comma-separated list of unquoted variable names that will be used to split the
data.

keep_factors Should the grouping columns be kept?

x An object to check for class split_factors.

Details

• split_factors() Split a data frame by factors.

• as.splict_factors() coerce to an object of class split_factors

• is.splict_factors() check if an object is of class split_factors

Value

A list where each element is a named level of the grouping factors. If more than one grouping
variable is used, then each element is the combination of the grouping variables.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

stars_pval 253

Examples

library(metan)

g1 <- split_factors(iris, Species)
g2 <- split_factors(data_ge, ENV, keep_factors = TRUE)

spdata <- as.split_factors(iris)

is.split_factors(spdata)

stars_pval Generate significance stars from p-values

Description

Generate significance stars from p-values using R’s standard definitions.

Usage

stars_pval(p_value)

Arguments

p_value A numeric vector of p-values

Details

Mapping from p_value ranges to symbols:

• 0 - 0.0001: ’****’

• 0.0001 - 0.001: ’***’

• 0.001 - 0.01: ’**’

• 0.01 - 0.05: ’*’

• 0.05 - 1.0: ’ns’

Value

A character vector containing the same number of elements as p-value, with an attribute "legend"
providing the conversion pattern.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

254 superiority

Examples

p_vals <- c(0.01, 0.043, 0.1, 0.0023, 0.000012)
stars_pval(p_vals)

superiority Lin e Binns’ superiority index

Description

[Stable]
Nonparametric stability analysis using the superiority index proposed by Lin & Binns (1988).

Usage

superiority(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s)

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class superiority where each element is the result of one variable and contains the
following items:

• environments The mean for each environment, the environment index and classification as
favorable and unfavorable environments.

• index The superiority index computed for all (Pi_a), favorable (Pi_f) and unfavorable (Pi_u)
environments.

Author(s)

Tiago Olivoto, <tiagoolivoto@gmail.com>

References

Lin, C.S., and M.R. Binns. 1988. A superiority measure of cultivar performance for cultivar x
location data. Can. J. Plant Sci. 68:193-198. doi:10.4141/cjps88018

https://doi.org/10.4141/cjps88-018

themes 255

See Also

Annicchiarico(), ecovalence(), ge_stats()

Examples

library(metan)
out <- superiority(data_ge2, ENV, GEN, PH)
print(out)

themes Personalized theme for ggplot2-based graphics

Description

• theme_metan(): Theme with a gray background and major grids.

• theme_metan_minimal(): A minimalistic theme with half-open frame, white background,
and no grid. For more details see ggplot2::theme().

• transparent_color(): A helper function to return a transparent color with Hex value of
"#000000FF"

• ggplot_color(): A helper function to emulate ggplot2 default color palette.

• alpha_color(): Return a semi-transparent color based on a color name and an alpha value.
For more details see grDevices::colors().

Usage

theme_metan(grid = "none", col.grid = "white", color.background = "gray95")

theme_metan_minimal()

transparent_color()

ggplot_color(n)

alpha_color(color, alpha = 50)

Arguments

grid Control the grid lines in plot. Defaults to "both" (x and y major grids). Allows
also grid = "x" for grids in x axis only, grid = "y" for grid in y axis only, or
grid = "none" for no grids.

col.grid The color for the grid lines
color.background

The color for the panel background.

256 Thennarasu

n The number of colors. This works well for up to about eight colours, but after
that it becomes hard to tell the different colours apart.

color A color name.

alpha An alpha value for transparency (0 < alpha < 1).

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Thennarasu Thennarasu’s stability statistics

Description

[Stable]

Performs a stability analysis based on Thennarasu (1995) statistics.

Usage

Thennarasu(.data, env, gen, resp, verbose = TRUE)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
use, for example, resp = c(var1, var2, var3).

verbose Logical argument. If verbose = FALSE the code will run silently.

Value

An object of class Thennarasu, which is a list containing the results for each variable used in the
argument resp. For each variable, a tibble with the columns GEN, N1, N2, N3 and N4 is returned.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Thennarasu, K. 1995. On certain nonparametric procedures for studying genotype x environment
interactions and yield stability. Ph.D. thesis. P.J. School, IARI, New Delhi, India.

transpose_df 257

Examples

library(metan)
out <- Thennarasu(data_ge, ENV, GEN, GY)
print(out)

transpose_df Transpose a data frame

Description

[Experimental]

Is an alternative to t() to transpose a data frame. The first column of df will become column names
in the transposed data.

Usage

transpose_df(df)

Arguments

df A data frame to be transposed.

Value

A tibble containing the transposed data.

Examples

library(metan)
df <-
data.frame(
GEN = c("G1", "G2", "G3","G4"),
E1 = rnorm(4, 100, 20),
E2 = rnorm(4, 10, 2),
E3 = rnorm(4, 50, 5),
E4 = rnorm(4, 1000, 150)

)
df
t(df)
transpose_df(df)

258 tukey_hsd

tukey_hsd Tukey Honest Significant Differences

Description

[Experimental]

Helper function to perform Tukey post-hoc tests. It is used in gafem.

Usage

tukey_hsd(model, ..., out = "long")

Arguments

model an object of class aov or lm.

... other arguments passed to the function stats::TukeyHSD(). These include:

• which: A character vector listing terms in the fitted model for which the
intervals should be calculated. Defaults to all the terms.

• ordered: A logical value indicating if the levels of the factor should be
ordered according to increasing average in the sample before taking differ-
ences. If ordered is true then the calculated differences in the means will all
be positive. The significant differences will be those for which the lwr end
point is positive.

out The format of outputs. If out = "long" a ’long’ format (tibble) is returned. If
out = "wide", a matrix with the adjusted p-values for each term is returned.

Value

A tibble data frame containing the results of the pairwise comparisons (if out = "long") or a "list-
columns" with p-values for each term (if out = "wide").

Examples

library(metan)
mod <- lm(PH ~ GEN + REP, data = data_g)
tukey_hsd(mod)
tukey_hsd(mod, out = "wide")

utils_as 259

utils_as Encode variables to a specific format

Description

[Stable]

Function to quick encode vector or columns to a specific format.

• as_numeric(): Encode columns to numeric using as.numeric().

• as_integer(): Encode columns to integer using as.integer().

• as_logical(): Encode columns to logical using as.logical().

• as_character(): Encode columns to character using as.character().

• as_factor(): Encode columns to factor using as.factor().

Usage

as_numeric(.data, ..., .keep = "all", .pull = FALSE)

as_integer(.data, ..., .keep = "all", .pull = FALSE)

as_logical(.data, ..., .keep = "all", .pull = FALSE)

as_character(.data, ..., .keep = "all", .pull = FALSE)

as_factor(.data, ..., .keep = "all", .pull = FALSE)

Arguments

.data A data frame or a vector.

... If .data is a data frame, then ... are the variable(s) to encode to a format.

.keep Allows you to control which columns from .data are retained in the output.

• "all" (default) retains all variables.
• "used" keeps any variables used to make new variables.

.pull Allows you to pull out the last column of the output. It is useful in combination
with .keep = "used". In this case, a vector will be created with the used column.

Value

An object of the same class of .data with the variables in ... encoded to the specified format.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

260 utils_bind

Examples

library(metan)
library(tibble)
df <-

tibble(y = rnorm(5),
x1 = c(1:5),
x2 = c(TRUE, TRUE, FALSE, FALSE, FALSE),
x3 = letters[1:5],
x4 = as.factor(x3))

df

Convert y to integer
as_integer(df, y)
as_integer(df$y)

convert x3 to factor
as_factor(df, x3)

Convert all columns to character
as_character(df, everything())

Convert x2 to numeric and coerce to a vector
as_numeric(df, x2, .keep = "used", .pull = TRUE)

utils_bind Helper function for binding rows

Description

• rbind_fill_id() [Stable] Implements the common pattern of do.call(rbind, dfs) with
data frame identifier and filling of missing values.

Usage

rbind_fill_id(..., .id = NULL, .fill = NA)

Arguments

... The dataframes. Either a list of data frames, or a comma-separated list of
dataframes.

.id Data frame identifier. If a comma-separated list of data frames is supplied, the
labels are taken from the names of the objects. When a list of data frames is
supplied, the labels are taken from the names of the list. If no names are found,
a numeric sequence is used instead.

.fill When row-binding, columns are matched by name, and any missing columns
will be filled with NA Defaults to NA.

utils_class 261

Value

A data frame.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

(df1 <- data.frame(v1 = c(1, 2), v2 = c(2, 3)))
(df2 <- data.frame(v3 = c(4, 5)))
rbind_fill_id(df1, df2)
rbind_fill_id(df1, df2,

.fill = ".",

.id = "dfs")

Named list
list <- list(a = df1, b = df2)
rbind_fill_id(list, .id = "dfs")

Unnamed list
list <- list(df1, df2)
rbind_fill_id(list, .id = "dfs")

utils_class Utilities for handling with classes

Description

Utilities for handling with classes

Usage

add_class(x, class)

has_class(x, class)

remove_class(x, class)

set_class(x, class)

Arguments

x An object

class The class to add or remove

262 utils_data

Details

• add_class(): add a class to the object x keeping all the other class(es).

• has_class(): Check if a class exists in object x and returns a logical value.

• set_class(): set a class to the object x.

• remove_class(): remove a class from the object x.

Value

The object x with the class added or removed.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
df <-
data_ge2 %>%
add_class("my_class")
class(df)
has_class(df, "my_class")
remove_class(df, "my_class") %>% class()
set_class(df, "data_frame") %>% class()

utils_data Utilities for data Copy-Pasta

Description

[Stable]

These functions allows interacting with the system clipboard. It is possible read from the clipboard
or write a data frame or matrix to the clipboard.

• clip_read() read data from the clipboard.

• clip_write() write data to the clipboard.

Usage

clip_read(header = TRUE, sep = "\t", ...)

clip_write(.data, sep = "\t", row_names = FALSE, col_names = TRUE, ...)

utils_data_org 263

Arguments

header If the copied data has a header row for dataFrame, defaults to TRUE.

sep The separator which should be used in the copied output.

... Further arguments to be passed to utils::read.table().

.data The data that should be copied to the clipboard. Only data frames and matrices
are allowed

row_names Decides if the output should keep row names or not, defaults to FALSE.

col_names Decides if the output should keep column names or not, defaults to TRUE.

Value

Nothing

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

utils_data_org Utilities for data organization

Description

[Experimental]

Useful function for data organization before statistical analysis

• add_seq_block(): Add a column with sequential block numeration in multi-environment
data sets.

• recode_factor(): Recode a factor column. A sequential numbering (with possible prefix) is
used to identify each level.

• df_to_selegen_54(): Given a multi-environment data with environment, genotype, and
replication, format the data to be used in the Selegen software (model 54).

Usage

add_seq_block(data, env, rep, new_factor = BLOCK, prefix = "", verbose = TRUE)

recode_factor(data, factor, new_factor = CODE, prefix = "", verbose = TRUE)

df_to_selegen_54(data, env, gen, rep, verbose = TRUE)

264 utils_data_org

Arguments

data A data frame.

env The name of the column that contains the levels of the environments.

rep The name of the column that contains the levels of the replications/blocks.

new_factor The name of the new column created.

prefix An optional prefix to bind with the new factor.

verbose Logical argument. If verbose = FALSE the code will run silently.

factor A column to recode.

gen The name of the column that contains the levels of the genotypes, that will be
treated as random effect.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Resende, M.D. V. 2016. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop
Breed. Appl. Biotechnol. 16(4): 330–339. doi:10.1590/198470332016v16n4a49.

Examples

library(metan)
df_ge <- ge_simula(ngen = 2,

nenv = 3,
nrep = 2) %>%

add_cols(ENV = c(rep("CACIQUE", 4),
rep("FREDERICO", 4),
rep("SANTA_MARIA", 4)))

df_ge

Add sequential block numbering over environments
add_seq_block(df_ge, ENV, REP, prefix = "B")

Recode the 'ENV' column to "ENV1", "ENV2", and so on.
recode_factor(df_ge,

factor = ENV,
prefix = "ENV",
new_factor = ENV_CODE)

Format the data to be used in the Selegen software (model 54)
df <- df_to_selegen_54(df_ge, ENV, GEN, REP) %>%
recode_factor(ENV, prefix = "E", new_factor = ENV)

https://doi.org/10.1590/1984-70332016v16n4a49

utils_mat 265

utils_mat Utilities for handling with matrices

Description

[Stable]
These functions help users to make upper, lower, or symmetric matrices easily.

Usage

make_upper_tri(x, diag = NA)

make_lower_tri(x, diag = NA)

make_lower_upper(lower, upper, diag = NA)

make_sym(x, make = "upper", diag = NA)

tidy_sym(x, keep_diag = TRUE)

Arguments

x A matrix to apply the function. It must be a symmetric (square) matrix in
make_upper_tri() and make_lower_tri() or a triangular matrix in make_sym().
tidy_sym() accepts both symmetrical or triangular matrices.

diag What show in the diagonal of the matrix. Default to NA.
lower A square matrix to fill the lower diagonal of the new matrix.
upper A square matrix to fill the upper diagonal of the new matrix.
make The triangular to built. Default is "upper". In this case, a symmetric matrix will

be built based on the values of a lower triangular matrix.
keep_diag Keep diagonal values in the tidy data frame? Defaults to TRUE.

Details

• make_upper_tri() makes an upper triangular matrix using a symmetric matrix.
• make_lower_tri() makes a lower triangular matrix using a symmetric matrix.
• make_sym() makes a lower triangular matrix using a symmetric matrix.
• tidy_sym() transform a symmetric matrix into tidy data frame.

Value

An upper, lower, or symmetric matrix, or a tidy data frame.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

266 utils_na_zero

Examples

library(metan)
m <- cor(select_cols(data_ge2, 5:10))
make_upper_tri(m)
make_lower_tri(m)
make_lower_tri(m) %>%
make_sym(diag = 0)
tidy_sym(m)
tidy_sym(make_lower_tri(m))

utils_na_zero Utilities for handling with NA and zero values

Description

[Stable]
NAs and zeros can increase the noise in multi-environment trial analysis. This collection of func-
tions will make it easier to deal with them.

• fill_na(): Fills NA in selected columns using the next or previous entry.
• has_na(), has_zero(): Check for NAs and 0s in the data and return a logical value.

• prop_na() returns the proportion of NAs in each column of a data frame.

• random_na(): Generate random NA values in a two-way table based on a desired proportion.

• remove_cols_na(), remove_rows_na(): Remove columns and rows that contains at least
one NA value.

• remove_cols_all_na(), remove_rows_all_na(): Remove columns and rows where all val-
ues are NAs.

• remove_cols_zero(), remove_rows_zero(): Remove columns and rows that contains at
least one 0 value, respectively.

• select_cols_na(), select_cols_zero(): Select columns with NAs and 0s, respectively.
• select_rows_na(), select_rows_zero(): Select rows with NAs and 0s, respectively.
• replace_na(), replace_zero(): Replace NAs and 0s, respectively, with a replacement

value.

Usage

fill_na(.data, ..., direction = "down")

has_na(.data)

prop_na(.data, ...)

utils_na_zero 267

remove_rows_na(.data, verbose = TRUE)

remove_rows_all_na(.data, verbose = TRUE)

remove_cols_na(.data, verbose = TRUE)

remove_cols_all_na(.data, verbose = TRUE)

select_cols_na(.data, verbose = TRUE)

select_rows_na(.data, verbose = TRUE)

replace_na(.data, ..., replacement = 0)

random_na(.data, prop)

has_zero(.data)

remove_rows_zero(.data, verbose = TRUE)

remove_cols_zero(.data, verbose = TRUE)

select_cols_zero(.data, verbose = TRUE)

select_rows_zero(.data, verbose = TRUE)

replace_zero(.data, ..., replacement = NA)

Arguments

.data A data frame.

... Variables to fill NAs in fill_na(), replace NAs in replace_na() or zeros in
replace_zero(). If ... is null then all variables in .data will be evaluated. It
must be a single variable name or a comma-separated list of unquoted variables
names. Select helpers are also allowed.

direction Direction in which to fill missing values. Currently either "down" (the default),
"up", "downup" (i.e. first down and then up) or "updown" (first up and then
down).

verbose Logical argument. If TRUE (default) shows in console the rows or columns
deleted.

replacement The value used for replacement. Defaults to 0. Other possible values are Use
"colmean", "colmin", and "colmax" to replace missing values with column
mean, minimum and maximum values, respectively.

prop The proportion (percentage) of NA values to generate in .data.

Value

A data frame with rows or columns with NA values deleted.

268 utils_num_str

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
data_naz <- iris %>%

group_by(Species) %>%
doo(~head(., n = 3)) %>%
as_character(Species)

data_naz
data_naz[c(2:3, 6, 8), c(1:2, 4, 5)] <- NA
data_naz[c(2, 7, 9), c(2, 3, 4)] <- 0
has_na(data_naz)
has_zero(data_naz)

Fill NA values of column GEN
fill_na(data_naz, Species)

Remove columns
remove_cols_na(data_naz)
remove_cols_zero(data_naz)
remove_rows_na(data_naz)
remove_rows_zero(data_naz)

Select columns
select_cols_na(data_naz)
select_cols_zero(data_naz)
select_rows_na(data_naz)
select_rows_zero(data_naz)

Replace values
replace_na(data_naz)
replace_zero(data_naz)

utils_num_str Utilities for handling with numbers and strings

Description

[Stable]

• all_lower_case(): Translate all non-numeric strings of a data frame to lower case.

• all_upper_case(): Translate all non-numeric strings of a data frame to upper case.

• all_title_case(): Translate all non-numeric strings of a data frame to title case.

• first_upper_case: Translate the first word of a string to upper case.

utils_num_str 269

• extract_number(): Extract the number(s) of a string.

• extract_string(): Extract all strings, ignoring case.

• find_text_in_num(): Find text characters in a numeric sequence and return the row index.

• has_text_in_num(): Inspect columns looking for text in numeric sequence and return a
warning if text is found.

• remove_space(): Remove all blank spaces of a string.

• remove_strings(): Remove all strings of a variable.

• replace_number(): Replace numbers with a replacement.

• replace_string(): Replace all strings with a replacement, ignoring case.

• round_cols(): Round a selected column or a whole data frame to significant figures.

• tidy_strings(): Tidy up characters strings, non-numeric columns, or any selected columns
in a data frame by putting all word in upper case, replacing any space, tabulation, punctua-
tion characters by '_', and putting '_' between lower and upper case. Suppose that str =
c("Env1", "env 1", "env.1") (which by definition should represent a unique level in plant
breeding trials, e.g., environment 1) is subjected to tidy_strings(str): the result will be
then c("ENV_1", "ENV_1", "ENV_1"). See Examples section for more examples.

Usage

all_upper_case(.data, ...)

all_lower_case(.data, ...)

all_title_case(.data, ...)

first_upper_case(.data, ...)

extract_number(.data, ..., pattern = NULL)

extract_string(.data, ..., pattern = NULL)

find_text_in_num(.data, ...)

has_text_in_num(.data)

remove_space(.data, ...)

remove_strings(.data, ...)

replace_number(
.data,
...,
pattern = NULL,
replacement = "",
ignore_case = FALSE

)

270 utils_num_str

replace_string(
.data,
...,
pattern = NULL,
replacement = "",
ignore_case = FALSE

)

round_cols(.data, ..., digits = 2)

tidy_strings(.data, ..., sep = "_")

Arguments

.data A data frame

... The argument depends on the function used.

• For round_cols() ... are the variables to round. If no variable is in-
formed, all the numeric variables from data are used.

• For all_lower_case(), all_upper_case(), all_title_case(), stract_number(),
stract_string(), remove_strings(), and tidy_strings() ... are the
variables to apply the function. If no variable is informed, the function will
be applied to all non-numeric variables in .data.

pattern A string to be matched. Regular Expression Syntax is also allowed.

replacement A string for replacement.

ignore_case If FALSE (default), the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

digits The number of significant figures.

sep A character string to separate the terms. Defaults to "_".

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)

################ Rounding numbers ###############
All numeric columns
round_cols(data_ge2, digits = 1)

Round specific columns
round_cols(data_ge2, EP, digits = 1)

########### Extract or replace numbers ##########
Extract numbers
extract_number(data_ge, GEN)

utils_num_str 271

Replace numbers
replace_number(data_ge, GEN)
replace_number(data_ge,

GEN,
pattern = 1,
replacement = "_one")

########## Extract, replace or remove strings ##########
Extract strings
extract_string(data_ge, GEN)

Replace strings
replace_string(data_ge, GEN)
replace_string(data_ge,

GEN,
pattern = "G",
replacement = "GENOTYPE_")

Remove strings
remove_strings(data_ge)
remove_strings(data_ge, ENV)

############ Find text in numeric sequences ###########
mixed_text <- data.frame(data_ge)
mixed_text[2, 4] <- "2..503"
mixed_text[3, 4] <- "3.2o75"
find_text_in_num(mixed_text, GY)

############# upper, lower and title cases ############
gen_text <- c("This is the first string.", "this is the second one")
all_lower_case(gen_text)
all_upper_case(gen_text)
all_title_case(gen_text)
first_upper_case(gen_text)

A whole data frame
all_lower_case(data_ge)

############### Tidy up messy text string ##############
messy_env <- c("ENV 1", "Env 1", "Env1", "env1", "Env.1", "Env_1")
tidy_strings(messy_env)

messy_gen <- c("GEN1", "gen 2", "Gen.3", "gen-4", "Gen_5", "GEN_6")
tidy_strings(messy_gen)

messy_int <- c("EnvGen", "Env_Gen", "env gen", "Env Gen", "ENV.GEN", "ENV_GEN")
tidy_strings(messy_int)

library(tibble)
Or a whole data frame
df <- tibble(Env = messy_env,

272 utils_progress

gen = messy_gen,
Env_GEN = interaction(Env, gen),
y = rnorm(6, 300, 10))

df
tidy_strings(df)

utils_progress Utilities for text progress bar in the terminal

Description

[Experimental]
Progress bars are configurable, may include percentage, elapsed time, and custom text.

• progress(): Initiate a custom progress bar of class pb_metan.

• run_progress(): Run the progress bar and should be called within a ’for loop’ statement, a
lapply() family or purrr::map() family of functional programming tools.

Usage

progress(
min = 0,
max = 100,
leftd = "|",
rightd = "|",
char = "=",
style = 2,
width = getOption("width"),
time = Sys.time()

)

run_progress(pb, actual, text = "", digits = 0, sleep = 0)

Arguments

min, max Numeric values for the extremes of the progress bar. Must have min < max.

leftd, rightd The left and right delimiters for the progress bar. Defaults to "|".

char The character (or character string) to form the progress bar.

style The ’style’ of the progress bar. Elapsed time is counted from calling progress()
up to each call of run_progress().

• type = 1: Shows a progress bar without percentage or elapsed time.
• type = 2: The default, shows the progress bar and its percentage.
• type = 3: Shows the progress bar and elapsed time.
• type = 4: Shows the progress bar, percentage, and elapsed time.

utils_progress 273

width The the width of the progress bar. Defaults to the number of characters is that
which fits into getOption("width").

time The system time used to compute the elapsed time from calling progress() to
each call of run_progress(). Defaults to Sys.time().

pb An object created with progress()

actual The actual value, for example, a loop variable that define the loop index value.

text An optional character string to be shown at the begining of the progress bar.

digits The number of significant figures in percentage value. Defaults to 0.

sleep Suspend execution for a time interval with Sys.sleep() within run_progress().
Defaults to 0.

Value

progress() returns a list of class pb_metan that contains the set parameters that will called by
run_progress().

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

################### A for looping approach ################
pb <- progress()
for (i in 1:100) {
run_progress(pb, actual = i, sleep = 0.01)

}

################### An apply family approach ##############
pb <- progress(max = 10)
foo <- function(...){

run_progress(pb, ...)
rnorm(100) %>% mean()

}
(a <- sapply(1:10, FUN = foo, sleep = 0.05))

######## A purrr functional programming approach ##########
foo2 <- function(...){

run_progress(pb2, ...)
rnorm(100) %>% mean()

}
pb2 <- progress(max = 10000,

style = 4,
leftd = "",
char = ".",
rightd = "!")

b <- purrr::map_dbl(1:10000, foo2, text = "Progress bar for sampling")
hist(b)

274 utils_rows_cols

utils_rows_cols Utilities for handling with rows and columns

Description

[Stable]

• add_cols(): Add one or more columns to an existing data frame. If specified .before or
.after columns does not exist, columns are appended at the end of the data. Return a data
frame with all the original columns in .data plus the columns declared in In add_cols()
columns in .data are available for the expressions. So, it is possible to add a column based
on existing data.

• add_rows(): Add one or more rows to an existing data frame. If specified .before or .after
rows does not exist, rows are appended at the end of the data. Return a data frame with all the
original rows in .data plus the rows declared in ... argument.

• add_row_id(): Add a column with the row id as the first column in .data.

• add_prefix() and add_suffix() add prefixes and suffixes, respectively, in variable names
selected in ... argument.

• all_pairs(): Get all the possible pairs between the levels of a factor.

• colnames_to_lower(): Translate all column names to lower case.

• colnames_to_upper(): Translate all column names to upper case.

• colnames_to_title(): Translate all column names to title case.

• column_exists(): Checks if a column exists in a data frame. Return a logical value.

• columns_to_first(): Move columns to first positions in .data.

• columns_to_last(): Move columns to last positions in .data.

• columns_to_rownames(): Move a column of .data to its row names.

• rownames_to_column(): Move the row names of .data to a new column.

• remove_rownames(): Remove the row names of .data.

• concatenate(): Concatenate columns of a data frame. If drop = TRUE then the existing vari-
ables are dropped. If pull = TRUE then the concatenated variable is pull out to a vector. This is
specially useful when using concatenate to add columns to a data frame with add_cols().

• get_levels(): Get the levels of a factor variable.

• get_levels_comb(): Get the combination of the levels of a factor.

• get_level_size(): Get the size of each level of a factor variable.

• remove_cols(): Remove one or more columns from a data frame.

• remove_rows(): Remove one or more rows from a data frame.

• reorder_cols(): Reorder columns in a data frame.

• select_cols(): Select one or more columns from a data frame.

utils_rows_cols 275

• select_first_col(): Select first variable, possibly with an offset.

• select_last_col(): Select last variable, possibly with an offset.

• select_numeric_cols(): Select all the numeric columns of a data frame.

• select_non_numeric_cols(): Select all the non-numeric columns of a data frame.

• select_rows(): Select one or more rows from a data frame.

• tidy_colnames(): Tidy up column names with tidy_strings().

Usage

add_cols(.data, ..., .before = NULL, .after = NULL)

add_rows(.data, ..., .before = NULL, .after = NULL)

add_row_id(.data, var = "row_id")

all_pairs(.data, levels)

add_prefix(.data, ..., prefix, sep = "_")

add_suffix(.data, ..., suffix, sep = "_")

colnames_to_lower(.data)

colnames_to_upper(.data)

colnames_to_title(.data)

column_to_first(.data, ...)

column_to_last(.data, ...)

column_to_rownames(.data, var = "rowname")

rownames_to_column(.data, var = "rowname")

remove_rownames(.data, ...)

column_exists(.data, cols)

concatenate(
.data,
...,
prefix = NULL,
suffix = NULL,
new_var = new_var,
sep = "_",
drop = FALSE,

276 utils_rows_cols

pull = FALSE,
.before = NULL,
.after = NULL

)

get_levels(.data, ...)

get_levels_comb(.data, ...)

get_level_size(.data, ...)

reorder_cols(.data, ..., .before = NULL, .after = NULL)

remove_cols(.data, ...)

remove_rows(.data, ...)

select_first_col(.data, offset = NULL)

select_last_col(.data, offset = NULL)

select_numeric_cols(.data)

select_non_numeric_cols(.data)

select_cols(.data, ...)

select_rows(.data, ...)

tidy_colnames(.data, sep = "_")

Arguments

.data A data frame

... The argument depends on the function used.
• For add_cols() and add_rows() is name-value pairs. All values must have

one element for each row in .data when using add_cols() or one element
for each column in .data when using add_rows(). Values of length 1 will
be recycled when using add_cols().

• For remove_cols() and select_cols(), ... is the column name or col-
umn index of the variable(s) to be dropped.

• For add_prefix() and add_suffix(), ... is the column name to add the
prefix or suffix, respectively. Select helpers are allowed.

• For columns_to_first() and columns_to_last(), ... is the column
name or column index of the variable(s) to be moved to first or last in .data.

• For remove_rows() and select_rows(), ... is an integer row value.
• For concatenate(), ... is the unquoted variable names to be concate-

nated.

utils_rows_cols 277

• For get_levels(), get_level_comb(), and get_level_size() ... is
the unquoted variable names to get the levels, levels combinations and lev-
els size, respectively.

.before, .after For add_cols(), concatenate(), and reorder_cols(), one-based column in-
dex or column name where to add the new columns, default: .after last column.
For add_rows(), one-based row index where to add the new rows, default: .after
last row.

var Name of column to use for rownames.

levels The levels of a factor or a numeric vector.

prefix, suffix The prefix and suffix used in add_prefix() and add_suffix(), respectively.

sep The separator to appear when using concatenate(), add_prefix(), or add_suffix().
Defaults to to "_".

cols A quoted variable name to check if it exists in .data.

new_var The name of the new variable containing the concatenated values. Defaults to
new_var.

drop Logical argument. If TRUE keeps the new variable new_var and drops the exist-
ing ones. Defaults to FALSE.

pull Logical argument. If TRUE, returns the last column (on the assumption that’s the
column you’ve created most recently), as a vector.

offset Set it to n to select the nth variable from the end (for select_last_col()) of
from the begin (for select_first_col())

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)

################# Adding columns #################
Variables x and y .after last column
data_ge %>%
add_cols(x = 10,

y = 30)
Variables x and y .before the variable GEN
data_ge %>%

add_cols(x = 10,
y = 30,
.before = GEN)

Creating a new variable based on the existing ones.
data_ge %>%

add_cols(GY2 = GY^2,
GY2_HM = GY2 + HM,
.after = GY)

############### Reordering columns ###############

278 utils_rows_cols

reorder_cols(data_ge2, NKR, .before = ENV)
reorder_cols(data_ge2, where(is.factor), .after = last_col())

######## Selecting and removing columns ##########
select_cols(data_ge2, GEN, REP)
remove_cols(data_ge2, GEN, REP)

########## Selecting and removing rows ###########
select_rows(data_ge2, 2:3)
remove_rows(data_ge2, 2:3)

########### Concatenating columns ################
concatenate(data_ge, ENV, GEN, REP)
concatenate(data_ge, ENV, GEN, REP, drop = TRUE)

Combine with add_cols() and replace_string()
data_ge2 %>%
add_cols(ENV_GEN = concatenate(., ENV, GEN, pull = TRUE),

.after = GEN) %>%
replace_string(ENV_GEN,

pattern = "H",
replacement = "HYB_")

Use prefixes and suffixes
concatenate(data_ge2, REP, prefix = "REP", new_var = REP)

Use prefixes and suffixes (the ear traits EH, EP, EL, and ED)
add_prefix(data_ge2, PH, EH, EP, EL, prefix = "EAR")
add_suffix(data_ge2, PH, EH, EP, EL, suffix = "EAR", sep = ".")

Use prefixes and suffixes (colnames)
concatenate(data_ge2, REP, prefix = "REP", new_var = REP)

########### formating column names ###############
Creating data with messy column names
df <- head(data_ge, 3)
colnames(df) <- c("Env", "gen", "Rep", "GY", "hm")
df
colnames_to_lower(df)
colnames_to_upper(df)
colnames_to_title(df)

################### Adding rows ##################
data_ge %>%

add_rows(GY = 10.3,
HM = 100.11,
.after = 1)

########## checking if a column exists ###########
column_exists(data_g, "GEN")

utils_samples 279

####### get the levels, level combinations and size of levels ########
get_levels(data_g, GEN)
get_levels_comb(data_ge, ENV, GEN)
get_level_size(data_g, GEN)

############## all possible pairs ################
all_pairs(data_g, GEN)

########## select numeric variables only #########
select_numeric_cols(data_g)
select_non_numeric_cols(data_g)

utils_samples Random Sampling

Description

• sample_random() performs Simple Random Sampling or Stratified Random Sampling

• sample_systematic() performs systematic sampling. In this case, a regular interval of size
k (k = floor(N/n)) is generated considering the population size (N) and desired sample size
(n). Then, the starting member (r) is randomly chosen between 1-k. The second element is r
+ k, and so on.

Usage

sample_random(data, n, prop, by = NULL, weight = NULL)

sample_systematic(data, n, r = NULL, by = NULL)

Arguments

data A data frame. If data is a grouped_df, the operation will be performed on each
group (stratified).

n, prop Provide either n, the number of rows, or prop, the proportion of rows to select.
If neither are supplied, n = 1 will be used.

by A categorical variable to compute the sample by. It is a shortcut to dplyr::group_by()
that allows to group the data by one categorical variable. If more than one group-
ing variable needs to be used, use dplyr::group_by() to pass the data grouped.

weight Sampling weights. This must evaluate to a vector of non-negative numbers the
same length as the input. Weights are automatically standardised to sum to 1.

r The starting element. By default, r is randomly selected between 1:k

Value

An object of the same type as data.

280 utils_sets

Examples

library(metan)
sample_random(data_ge, n = 5)
sample_random(data_ge,

n = 3,
by = ENV)

sample_systematic(data_g, n = 6)

utils_sets Utilities for set operations for many sets

Description

[Stable]
Provides alternative function to base::union(), base::intersect(), and base::setdiff().

• set_union(): Returns the union of the sets in

• set_intersect(): Returns the intersect of the sets in

• set_difference(): Returns the difference of the sets in

Usage

set_intersect(..., pairs = FALSE)

set_union(..., pairs = FALSE)

set_difference(..., pairs = FALSE)

Arguments

... A list or a comma-separated list of vectors in the same class. If vector contains
duplicates they will be discarded. If the list doesn’t have names the sets will be
named as "set_1", "Set_2", "Set_3" and so on. If vectors are given in ..., the
set names will be named with the names of the objects provided. Data frames
are also allowed, provided that common column names exist.

pairs Returns the pairwise unions of the sets? Defaults to FALSE.

Value

A vector showing the desired operation of the sets. If pairs = TRUE, returns a list showing the
pairwise operation of the sets.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

utils_stats 281

Examples

library(metan)
(A <- letters[1:4])
(B <- letters[2:5])
(C <- letters[3:7])

set_union(A, B)
set_intersect(A, B, C)
set_difference(B, C)

Operations with data frames
Add a row id for better understanding
sets <- data_ge %>% add_row_id()

set_1 <- sets[1:5,]
set_2 <- sets[2:6,]
set_3 <- sets[3:7,]

set_intersect(set_1, set_2, set_3)
set_difference(set_2, set_3)
set_union(set_1, set_2, set_3)

utils_stats Useful functions for computing descriptive statistics

Description

[Stable]

• The following functions compute descriptive statistics by levels of a factor or combination
of factors quickly.

– cv_by() For computing coefficient of variation.
– max_by() For computing maximum values.
– mean_by() For computing arithmetic means.
– min_by() For compuing minimum values.
– n_by() For getting the length.
– sd_by() For computing sample standard deviation.
– var_by() For computing sample variance.
– sem_by() For computing standard error of the mean.

• Useful functions for descriptive statistics. All of them work naturally with \%>\%, handle
grouped data and multiple variables (all numeric variables from .data by default).

– av_dev() computes the average absolute deviation.
– ci_mean_t() computes the t-interval for the mean.
– ci_mean_z() computes the z-interval for the mean.

282 utils_stats

– cv() computes the coefficient of variation.
– freq_table() Computes a frequency table for either numeric and categorical/discrete

data. For numeric data, it is possible to define the number of classes to be generated.
– hmean(), gmean() computes the harmonic and geometric means, respectively. The

harmonic mean is the reciprocal of the arithmetic mean of the reciprocals. The geometric
mean is the nth root of n products.

– kurt() computes the kurtosis like used in SAS and SPSS.
– range_data() Computes the range of the values.
– n_valid() The valid (not NA) length of a data.
– n_unique() Number of unique values.
– n_missing() Number of missing values.
– row_col_mean(), row_col_sum() Adds a row with the mean/sum of each variable and

a column with the the mean/sum for each row of the data.
– sd_amo(), sd_pop() Computes sample and populational standard deviation, respec-

tively.
– sem() computes the standard error of the mean.
– skew() computes the skewness like used in SAS and SPSS.
– ave_dev() computes the average of the absolute deviations.
– sum_dev() computes the sum of the absolute deviations.
– sum_sq() computes the sum of the squared values.
– sum_sq_dev() computes the sum of the squared deviations.
– var_amo(), var_pop() computes sample and populational variance.

desc_stat() is wrapper function around the above ones and can be used to compute quickly all
these statistics at once.

Usage

av_dev(.data, ..., na.rm = FALSE)

ci_mean_t(.data, ..., na.rm = FALSE, level = 0.95)

ci_mean_z(.data, ..., na.rm = FALSE, level = 0.95)

cv(.data, ..., na.rm = FALSE)

freq_table(.data, var, k = NULL, digits = 3)

freq_hist(
table,
xlab = NULL,
ylab = NULL,
fill = "gray",
color = "black",
ygrid = TRUE

)

utils_stats 283

hmean(.data, ..., na.rm = FALSE)

gmean(.data, ..., na.rm = FALSE)

kurt(.data, ..., na.rm = FALSE)

n_missing(.data, ..., na.rm = FALSE)

n_unique(.data, ..., na.rm = FALSE)

n_valid(.data, ..., na.rm = FALSE)

pseudo_sigma(.data, ..., na.rm = FALSE)

range_data(.data, ..., na.rm = FALSE)

row_col_mean(.data, na.rm = FALSE)

row_col_sum(.data, na.rm = FALSE)

sd_amo(.data, ..., na.rm = FALSE)

sd_pop(.data, ..., na.rm = FALSE)

sem(.data, ..., na.rm = FALSE)

skew(.data, ..., na.rm = FALSE)

sum_dev(.data, ..., na.rm = FALSE)

ave_dev(.data, ..., na.rm = FALSE)

sum_sq_dev(.data, ..., na.rm = FALSE)

sum_sq(.data, ..., na.rm = FALSE)

var_pop(.data, ..., na.rm = FALSE)

var_amo(.data, ..., na.rm = FALSE)

cv_by(.data, ..., .vars = NULL, na.rm = FALSE)

max_by(.data, ..., .vars = NULL, na.rm = FALSE)

min_by(.data, ..., .vars = NULL, na.rm = FALSE)

means_by(.data, ..., .vars = NULL, na.rm = FALSE)

284 utils_stats

mean_by(.data, ..., .vars = NULL, na.rm = FALSE)

n_by(.data, ..., .vars = NULL, na.rm = FALSE)

sd_by(.data, ..., .vars = NULL, na.rm = FALSE)

var_by(.data, ..., .vars = NULL, na.rm = FALSE)

sem_by(.data, ..., .vars = NULL, na.rm = FALSE)

sum_by(.data, ..., .vars = NULL, na.rm = FALSE)

Arguments

.data A data frame or a numeric vector.

... The argument depends on the function used.

• For *_by functions, ... is one or more categorical variables for grouping
the data. Then the statistic required will be computed for all numeric vari-
ables in the data. If no variables are informed in ..., the statistic will be
computed ignoring all non-numeric variables in .data.

• For the other statistics, ... is a comma-separated of unquoted variable
names to compute the statistics. If no variables are informed in n ...,
the statistic will be computed for all numeric variables in .data.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

level The confidence level for the confidence interval of the mean. Defaults to 0.95.

var The variable to compute the frequency table. See Details for more details.

k The number of classes to be created. See Details for more details.

digits The number of significant figures to show. Defaults to 2.

table A frequency table computed with freq_table().

xlab, ylab The x and y labels.

fill, color The color to fill the bars and color the border of the bar, respectively.

ygrid Shows a grid line on the y axis? Defaults to TRUE. freq_hist <- function(table,

.vars Used to select variables in the *_by() functions. One or more unquoted ex-
pressions separated by commas. Variable names can be used as if they were
positions in the data frame, so expressions like x:y can be used to select a range
of variables. Defaults to NULL (all numeric variables are analyzed)..

Details

The function freq_table() computes a frequency table for either numerical or categorical vari-
ables. If a variable is categorical or discrete (integer values), the number of classes will be the
number of levels that the variable contains.

If a variable (say, data) is continuous, the number of classes (k) is given by the square root of the
number of samples (n) if n =< 100 or 5 * log10(n) if n > 100.

utils_stats 285

The amplitude (A) of the data is used to define the size of the class (c), given by

c =
A

n− 1

The lower limit of the first class (LL1) is given by min(data) - c / 2. The upper limit is given by LL1
+ c. The limits of the other classes are given in the same way. After the creation of the classes, the
absolute and relative frequencies within each class are computed.

Value

• Functions *_by() returns a tbl_df with the computed statistics by each level of the factor(s)
declared in

• All other functions return a named integer if the input is a data frame or a numeric value if the
input is a numeric vector.

• freq_table() Returns a list with the frequency table and the breaks used for class definition.
These breaks can be used to construct an histogram of the variable.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Ferreira, Daniel Furtado. 2009. Estatistica Basica. 2 ed. Vicosa, MG: UFLA.

Examples

library(metan)
means of all numeric variables by ENV
mean_by(data_ge2, GEN, ENV)

Coefficient of variation for all numeric variables
by GEN and ENV
cv_by(data_ge2, GEN, ENV)

Skewness of a numeric vector
set.seed(1)
nvec <- rnorm(200, 10, 1)
skew(nvec)

Confidence interval 0.95 for the mean
All numeric variables
Grouped by levels of ENV
data_ge2 %>%

group_by(ENV) %>%
ci_mean_t()

standard error of the mean
Variable PH and EH
sem(data_ge2, PH, EH)

286 utils_wd

Frequency table for variable NR
data_ge2 %>%

freq_table(NR)

utils_wd Set and get the Working Directory quicky

Description

[Experimental]

• get_wd_here() gets the working directory to the path of the current script.
• set_wd_here() sets the working directory to the path of the current script.
• open_wd_here() Open the File Explorer at the directory path of the current script.
• open_wd() Open the File Explorer at the current working directory.

Usage

set_wd_here(path = NULL)

get_wd_here(path = NULL)

open_wd_here(path = get_wd_here())

open_wd(path = getwd())

Arguments

path Path components below the project root. Defaults to NULL. This means that the
directory will be set to the path of the file. If the path doesn’t exist, the user will
be asked if he wants to create such a folder.

Value

• get_wd_here() returns a full-path directory name.
• get_wd_here() returns a message showing the current working directory.
• open_wd_here() Opens the File Explorer of the path returned by get_wd_here().

Examples

Not run:
get_wd_here()
set_wd_here()
open_wd_here()

End(Not run)

venn_plot 287

venn_plot Draw Venn diagrams

Description

[Stable]

Produces ggplot2-based Venn plots for 2, 3 or 4 sets. A Venn diagram shows all possible logical
relationships between several sets of data.

Usage

venn_plot(
...,
names = NULL,
show_elements = FALSE,
split_labels = FALSE,
split_each = 4,
show_sets = FALSE,
fill = ggplot_color(4),
alpha = 0.5,
stroke_color = "white",
stroke_alpha = 1,
stroke_size = 1,
stroke_linetype = "solid",
name_color = "black",
name_size = 6,
text_color = "black",
text_size = 4,
label_sep = ","

)

Arguments

... A list or a comma-separated list of vectors in the same class. If vector contains
duplicates they will be discarded. If the list doesn’t have names the sets will be
named as "set_1", "Set_2", "Set_3" and so on. If vectors are given in ...,
the set names will be named with the names of the objects provided.

names By default, the names of the sets are set as the names of the objects in ...
(names = NULL). Use names to override this default.

show_elements Show set elements instead of count. Defaults to FALSE.

split_labels Splits the element labels into new lines each split_each elements? Defaults
to TRUE. This is useful to split labels into several lines when show_elements =
TRUE is used.

split_each The number of elements that will apper in each line when split_labels = TRUE
is used.

288 venn_plot

show_sets Show set names instead of count. Defaults to FALSE.

fill Filling colors in circles. Defaults to the default ggplot2 color palette. A vector
of length 1 will be recycled.

alpha Transparency for filling circles. Defaults to 0.5.

stroke_color Stroke color for drawing circles.

stroke_alpha Transparency for drawing circles.

stroke_size Stroke size for drawing circles.
stroke_linetype

Line type for drawing circles. Defaults to "solid".

name_color Text color for set names. Defaults to "black".

name_size Text size for set names.

text_color Text color for intersect contents.

text_size Text size for intersect contents.

label_sep The separator for labs when show_elements = TRUE. Defaults to ",".

Value

A ggplot object.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

Examples

library(metan)
(A <- letters[1:4])
(B <- letters[2:5])
(C <- letters[3:7])
(D <- letters[4:12])

create a Venn plot
venn_plot(A, B)

Three sets
venn_plot(A, B, C)

Four sets
venn_plot(A, B, C, D)

Use a list
dfs <- list(A = A, B = B, C = C, D = D)
venn_plot(dfs,

show_elements = TRUE,
fill = c("red", "blue", "green", "gray"),
stroke_color = "black",
alpha = 0.8,

waas 289

text_size = 8,
label_sep = ".")

waas Weighted Average of Absolute Scores

Description

[Stable]
Compute the Weighted Average of Absolute Scores for AMMI analysis (Olivoto et al., 2019).

This function compute the weighted average of absolute scores, estimated as follows:

WAASi =

p∑
k=1

|IPCAik × EPk|/
p∑

k=1

EPk

where WAASi is the weighted average of absolute scores of the ith genotype; IPCAik is the score
of the ith genotype in the kth IPCA; and EPk is the explained variance of the kth IPCA for k =
1,2,..,p, considering p the number of significant PCAs, or a declared number of PCAs. For example
if prob = 0.05, all axis that are significant considering this probability level are used. The number
of axis can be also informed by declaring naxis = x. This will override the number of significant
axes according to the argument prob.

Usage

waas(
.data,
env,
gen,
rep,
resp,
block = NULL,
mresp = NULL,
wresp = NULL,
prob = 0.05,
naxis = NULL,
ind_anova = FALSE,
verbose = TRUE

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

290 waas

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then a resolvable alpha-lattice design (Patterson and
Williams, 1976) is employed. All effects, except the error, are assumed to be
fixed.

mresp The new maximum value after rescaling the response variable. By default, all
variables in resp are rescaled so that de maximum value is 100 and the minimum
value is 0 (i.e., mresp = NULL). It must be a character vector of the same length
of resp if rescaling is assumed to be different across variables, e.g., if for the
first variable smaller values are better and for the second one, higher values are
better, then mresp = c("l, h") must be used. Character value of length 1 will
be recycled with a warning message.

wresp The weight for the response variable(s) for computing the WAASBY index. By
default, all variables in resp have equal weights for mean performance and sta-
bility (i.e., wresp = 50). It must be a numeric vector of the same length of resp
to assign different weights across variables, e.g., if for the first variable equal
weights for mean performance and stability are assumed and for the second one,
a higher weight for mean performance (e.g. 65) is assumed, then wresp = c(50,
65) must be used. Numeric value of length 1 will be recycled with a warning
message.

prob The p-value for considering an interaction principal component axis significant.

naxis The number of IPCAs to be used for computing the WAAS index. Default is
NULL (Significant IPCAs are used). If values are informed, the number of IPCAS
will be used independently on its significance. Note that if two or more variables
are included in resp, then naxis must be a vector.

ind_anova Logical argument set to FALSE. If TRUE an within-environment ANOVA is per-
formed.

verbose Logical argument. If verbose = FALSE the code is run silently.

Value

An object of class waas with the following items for each variable:

• individual A within-environments ANOVA considering a fixed-effect model.

• model A data frame with the response variable, the scores of all Principal Components, the
estimates of Weighted Average of Absolute Scores, and WAASY (the index that consider the
weights for stability and productivity in the genotype ranking.

• MeansGxE The means of genotypes in the environments

• PCA Principal Component Analysis.

• ANOVA Joint analysis of variance for the main effects and Principal Component analysis of
the interaction effect.

• Details A list summarizing the results. The following information are showed. WgtResponse,
the weight for the response variable in estimating WAASB, WgtWAAS the weight for stability,

waas 291

Ngen the number of genotypes, Nenv the number of environments, OVmean the overall mean,
Min the minimum observed (returning the genotype and environment), Max the maximum
observed, Max the maximum observed, MinENV the environment with the lower mean, MaxENV
the environment with the larger mean observed, MinGEN the genotype with the lower mean,
MaxGEN the genotype with the larger.

• augment: Information about each observation in the dataset. This includes predicted values
in the fitted column, residuals in the resid column, standardized residuals in the stdres
column, the diagonal of the ’hat’ matrix in the hat, and standard errors for the fitted values in
the se.fit column.

• probint The p-value for the genotype-vs-environment interaction.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a.
Mean performance and stability in multi-environment trials I: Combining features of AMMI and
BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

See Also

waas_means() waasb() get_model_data()

Examples

library(metan)
#===#
Example 1: Analyzing all numeric variables considering p-value#
<= 0.05 to compute the WAAS.
#===#
model <- waas(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

Residual plot (first variable)
plot(model)

Get the WAAS index
get_model_data(model, "WAAS")

Plot WAAS and response variable
plot_scores(model, type = 3)

#===#
Example 2: Declaring the number of axis to be used for
computing WAAS and assigning a larger weight for the response
variable when computing the WAASBY index.

https://doi.org/10.2134/agronj2019.03.0220

292 waasb

#===#

model2 <- waas(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = everything(),
naxis = 1, # Only to compare with PC1
wresp = 60)

Get the WAAS index (it will be |PC1|)
get_model_data(model2)

Get values for IPCA1
get_model_data(model2, "PC1")

#===#
Example 3: Analyzing GY and HM assuming a random-effect model.#
Smaller values for HM and higher values for GY are better.
To estimate WAASBY, higher weight for the GY (60%) and lower
weight for HM (40%) are considered for mean performance.
#===#

model3 <- waas(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM),
mresp = c("h, l"),
wresp = c(60, 40))

Get the ranks for the WAASY index
get_model_data(model3, what = "OrWAASY")

waasb Weighted Average of Absolute Scores

Description

[Stable]

Compute the Weighted Average of Absolute Scores (Olivoto et al., 2019) for quantifying the stabil-
ity of g genotypes conducted in e environments using linear mixed-effect models.

The weighted average of absolute scores is computed considering all Interaction Principal Com-
ponent Axis (IPCA) from the Singular Value Decomposition (SVD) of the matrix of genotype-
environment interaction (GEI) effects generated by a linear mixed-effect model, as follows:

waasb 293

WAASBi =

p∑
k=1

|IPCAik × EPk|/
p∑

k=1

EPk

where WAASBi is the weighted average of absolute scores of the ith genotype; IPCAik is the
score of the ith genotype in the kth Interaction Principal Component Axis (IPCA); and EPk is the
explained variance of the kth IPCA for k = 1,2,..,p, considering p = min(g − 1; e− 1).

The nature of the effects in the model is chosen with the argument random. By default, the exper-
imental design considered in each environment is a randomized complete block design. If block
is informed, a resolvable alpha-lattice design (Patterson and Williams, 1976) is implemented. The
following six models can be fitted depending on the values of random and block arguments.

• Model 1: block = NULL and random = "gen" (The default option). This model considers a
Randomized Complete Block Design in each environment assuming genotype and genotype-
environment interaction as random effects. Environments and blocks nested within environ-
ments are assumed to fixed factors.

• Model 2: block = NULL and random = "env". This model considers a Randomized Complete
Block Design in each environment treating environment, genotype-environment interaction,
and blocks nested within environments as random factors. Genotypes are assumed to be fixed
factors.

• Model 3: block = NULL and random = "all". This model considers a Randomized Complete
Block Design in each environment assuming a random-effect model, i.e., all effects (geno-
types, environments, genotype-vs-environment interaction and blocks nested within environ-
ments) are assumed to be random factors.

• Model 4: block is not NULL and random = "gen". This model considers an alpha-lattice de-
sign in each environment assuming genotype, genotype-environment interaction, and incom-
plete blocks nested within complete replicates as random to make use of inter-block informa-
tion (Mohring et al., 2015). Complete replicates nested within environments and environments
are assumed to be fixed factors.

• Model 5: block is not NULL and random = "env". This model considers an alpha-lattice
design in each environment assuming genotype as fixed. All other sources of variation (envi-
ronment, genotype-environment interaction, complete replicates nested within environments,
and incomplete blocks nested within replicates) are assumed to be random factors.

• Model 6: block is not NULL and random = "all". This model considers an alpha-lattice
design in each environment assuming all effects, except the intercept, as random factors.

Usage

waasb(
.data,
env,
gen,
rep,
resp,
block = NULL,
by = NULL,
mresp = NULL,

294 waasb

wresp = NULL,
random = "gen",
prob = 0.05,
ind_anova = FALSE,
verbose = TRUE,
...

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

rep The name of the column that contains the levels of the replications/blocks.

resp The response variable(s). To analyze multiple variables in a single procedure a
vector of variables may be used. For example resp = c(var1, var2, var3).

block Defaults to NULL. In this case, a randomized complete block design is consid-
ered. If block is informed, then an alpha-lattice design is employed considering
block as random to make use of inter-block information, whereas the complete
replicate effect is always taken as fixed, as no inter-replicate information was to
be recovered (Mohring et al., 2015).

by One variable (factor) to compute the function by. It is a shortcut to dplyr::group_by().This
is especially useful, for example, when the researcher want to compute the in-
dexes by mega-environments. In this case, an object of class waasb_grouped
is returned. mtsi() can then be used to compute the mtsi index within each
mega-environment.

mresp The new maximum value after rescaling the response variable. By default, all
variables in resp are rescaled so that de maximum value is 100 and the minimum
value is 0 (i.e., mresp = NULL). It must be a character vector of the same length
of resp if rescaling is assumed to be different across variables, e.g., if for the
first variable smaller values are better and for the second one, higher values are
better, then mresp = c("l, h") must be used. Character value of length 1 will
be recycled with a warning message.

wresp The weight for the response variable(s) for computing the WAASBY index. By
default, all variables in resp have equal weights for mean performance and sta-
bility (i.e., wresp = 50). It must be a numeric vector of the same length of resp
to assign different weights across variables, e.g., if for the first variable equal
weights for mean performance and stability are assumed and for the second one,
a higher weight for mean performance (e.g. 65) is assumed, then wresp = c(50,
65) must be used. Numeric value of length 1 will be recycled with a warning
message.

random The effects of the model assumed to be random. Defaults to random = "gen".
See Details to see the random effects assumed depending on the experimental
design of the trials.

prob The probability for estimating confidence interval for BLUP’s prediction.

waasb 295

ind_anova Logical argument set to FALSE. If TRUE an within-environment ANOVA is per-
formed.

verbose Logical argument. If verbose = FALSE the code will run silently.

... Arguments passed to the function impute_missing_val() for imputation of
missing values in the matrix of BLUPs for genotype-environment interaction,
thus allowing the computation of the WAASB index.

Value

An object of class waasb with the following items for each variable:

• individual A within-environments ANOVA considering a fixed-effect model.

• fixed Test for fixed effects.

• random Variance components for random effects.

• LRT The Likelihood Ratio Test for the random effects.

• model A tibble with the response variable, the scores of all IPCAs, the estimates of Weighted
Average of Absolute Scores, and WAASBY (the index that considers the weights for stability
and mean performance in the genotype ranking), and their respective ranks.

• BLUPgen The random effects and estimated BLUPS for genotypes (If random = "gen" or
random = "all")

• BLUPenv The random effects and estimated BLUPS for environments, (If random = "env"
or random = "all").

• BLUPint The random effects and estimated BLUPS of all genotypes in all environments.

• PCA The results of Principal Component Analysis with the eigenvalues and explained vari-
ance of the matrix of genotype-environment effects estimated by the linear fixed-effect model.

• MeansGxE The phenotypic means of genotypes in the environments.

• Details A list summarizing the results. The following information are shown: Nenv, the num-
ber of environments in the analysis; Ngen the number of genotypes in the analysis; mresp
The value attributed to the highest value of the response variable after rescaling it; wresp The
weight of the response variable for estimating the WAASBY index. Mean the grand mean; SE
the standard error of the mean; SD the standard deviation. CV the coefficient of variation of
the phenotypic means, estimating WAASB, Min the minimum value observed (returning the
genotype and environment), Max the maximum value observed (returning the genotype and
environment); MinENV the environment with the lower mean, MaxENV the environment with
the larger mean observed, MinGEN the genotype with the lower mean, MaxGEN the genotype
with the larger.

• ESTIMATES A tibble with the genetic parameters (if random = "gen" or random = "all")
with the following columns: Phenotypic variance the phenotypic variance; Heritability
the broad-sense heritability; GEr2 the coefficient of determination of the interaction effects;
h2mg the heritability on the mean basis; Accuracy the selective accuracy; rge the genotype-
environment correlation; CVg the genotypic coefficient of variation; CVr the residual coeffi-
cient of variation; CV ratio the ratio between genotypic and residual coefficient of variation.

• residuals The residuals of the model.

• formula The formula used to fit the model.

296 waasb

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

Mohring, J., E. Williams, and H.-P. Piepho. 2015. Inter-block information: to recover or not to
recover it? TAG. Theor. Appl. Genet. 128:1541-54. doi:10.1007/s0012201525300

Patterson, H.D., and E.R. Williams. 1976. A new class of resolvable incomplete block designs.
Biometrika 63:83-92.

See Also

mtsi() waas() get_model_data() plot_scores()

Examples

library(metan)
#===#
Example 1: Analyzing all numeric variables assuming genotypes
as random effects with equal weights for mean performance and
stability
#===#
model <- waasb(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

Genetic parameters
get_model_data(model, "genpar")

#===#
Example 2: Analyzing variables that starts with "N"
assuming environment as random effects with higher weight for
response variable (65) for the three traits.
#===#

model2 <- waasb(data_ge2,
env = ENV,
gen = GEN,
rep = REP,
random = "env",
resp = starts_with("N"),
wresp = 65)

https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1007/s00122-015-2530-0

waas_means 297

Get the index WAASBY
get_model_data(model2, what = "WAASBY")

#===#
Example 3: Analyzing GY and HM assuming a random-effect model.#
Smaller values for HM and higher values for GY are better.
To estimate WAASBY, higher weight for the GY (60%) and lower
weight for HM (40%) are considered for mean performance.
#===#

model3 <- waasb(data_ge,
env = ENV,
gen = GEN,
rep = REP,
resp = c(GY, HM),
random = "all",
mresp = c("h, l"),
wresp = c(60, 40))

Plot the scores (response x WAASB)
plot_scores(model3, type = 3)

waas_means Weighted Average of Absolute Scores

Description

[Stable]
Compute the Weighted Average of Absolute Scores (Olivoto et al., 2019) based on means for
genotype-environment data as follows:

WAASi =

p∑
k=1

|IPCAik × EPk|/
p∑

k=1

EPk

where WAASi is the weighted average of absolute scores of the ith genotype; PCAik is the score
of the ith genotype in the kth IPCA; and EPk is the explained variance of the kth IPCA for k =
1,2,..,p, where p is the number of IPCAs that explain at least an amount of the genotype-interaction
variance declared in the argument min_expl_var.

Usage

waas_means(
.data,
env,
gen,

298 waas_means

resp,
mresp = NULL,
wresp = NULL,
min_expl_var = 85,
verbose = TRUE,
...

)

Arguments

.data The dataset containing the columns related to Environments, Genotypes, repli-
cation/block and response variable(s).

env The name of the column that contains the levels of the environments.

gen The name of the column that contains the levels of the genotypes.

resp The response variable(s). To analyze multiple variables in a single procedure
a vector of variables may be used. For example resp = c(var1, var2, var3).
Select helpers are also allowed.

mresp The new maximum value after rescaling the response variable. By default, all
variables in resp are rescaled so that de maximum value is 100 and the minimum
value is 0 (i.e., mresp = NULL). It must be a character vector of the same length
of resp if rescaling is assumed to be different across variables, e.g., if for the
first variable smaller values are better and for the second one, higher values are
better, then mresp = c("l, h") must be used. Character value of length 1 will
be recycled with a warning message.

wresp The weight for the response variable(s) for computing the WAASBY index.
Must be a numeric vector of the same length of resp. Defaults to 50, i.e., equal
weights for stability and mean performance.

min_expl_var The minimum explained variance. Defaults to 85. Interaction Principal Compo-
ment Axis are iteractively retained up to the explained variance (eigenvalues in
the singular value decomposition of the matrix with the interaction effects) be
greather than or equal to min_expl_var. For example, if the explained variance
(in percentage) in seven possible IPCAs are 56, 21, 9, 6, 4, 3, 1, resulting
in a cumulative proportion of 56, 77, 86, 92, 96, 99, 100, then p = 3,
i.e., three IPCAs will be used to compute the index WAAS.

verbose Logical argument. If verbose = FALSE the code is run silently.

... Arguments passed to the function impute_missing_val() for imputation of
missing values in case of unbalanced data.

Value

An object of class waas_means with the following items for each variable:

• model A data frame with the response variable, the scores of all Principal Components, the
estimates of Weighted Average of Absolute Scores, and WAASY (the index that consider the
weights for stability and productivity in the genotype ranking.

• ge_means A tbl_df containing the genotype-environment means.

waas_means 299

• ge_eff A gxe matrix containing the genotype-environment effects.

• eigenvalues The eigenvalues from the singular value decomposition of the matrix withe the
genotype-environment interaction effects.

• proportion The proportion of the variance explained by each IPCA.

• cum_proportion The cumulative proportion of the variance explained.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019a.
Mean performance and stability in multi-environment trials I: Combining features of AMMI and
BLUP techniques. Agron. J. 111:2949-2960. doi:10.2134/agronj2019.03.0220

See Also

waas() waasb()

Examples

library(metan)
Data with replicates
model <- waas(data_ge,

env = ENV,
gen = GEN,
rep = REP,
resp = everything())

Based on means of genotype-environment data
data_means <- mean_by(data_ge, ENV, GEN)
model2 <- waas_means(data_ge,

env = ENV,
gen = GEN,
resp = everything())

The index WAAS
get_model_data(model, what = "OrWAAS")
get_model_data(model2, what = "OrWAAS")

https://doi.org/10.2134/agronj2019.03.0220

300 wsmp

wsmp Weighting between stability and mean performance

Description

[Stable]
This function computes the WAASY or WAASBY indexes (Olivoto et al., 2019) considering differ-
ent scenarios of weights for stability and mean performance.

After fitting a model with the functions waas() or waasb() it is possible to compute the superiority
indexes WAASY or WAASBY in different scenarios of weights for stability and mean performance.
The number of scenarios is defined by the arguments increment. By default, twenty-one different
scenarios are computed. In this case, the the superiority index is computed considering the following
weights: stability (waasb or waas) = 100; mean performance = 0. In other words, only stability is
considered for genotype ranking. In the next iteration, the weights becomes 95/5 (since increment =
5). In the third scenario, the weights become 90/10, and so on up to these weights become 0/100. In
the last iteration, the genotype ranking for WAASY or WAASBY matches perfectly with the ranks
of the response variable.

Usage

wsmp(
model,
mresp = 100,
increment = 5,
saveWAASY = 50,
prob = 0.05,
progbar = TRUE

)

Arguments

model An object computed with waas(), waasb(), or mps().

mresp A numeric value that will be the new maximum value after rescaling. By default,
the variable in resp is rescaled so that the original maximum and minimum
values are 100 and 0, respectively. Let us consider that for a specific trait, say,
lodging incidence, lower values are better. In this case, you should use mresp =
0 to rescale the response variable so that the lowest values will become 100 and
the highest values 0.

increment The increment in the weight ratio for stability and mean performance. Se the
Details section for more information.

saveWAASY Automatically save the WAASY values when the weight for stability is saveWAASY.

prob The p-value for considering an interaction principal component axis significant.
must be multiple of increment. If this assumption is not valid, an error will be
occur.

progbar A logical argument to define if a progress bar is shown. Default is TRUE.

wsmp 301

Value

An object of class wsmp with the following items for each variable

• When computed with waas() or waasb().

– scenarios A list with the model for all computed scenarios.
– WAASY The values of the WAASY estimated when the weight for the stability in the

loop match with argument saveWAASY.
– hetdata, hetcomb The data used to produce the heatmaps.
– Ranks All the values of WAASY estimated in the different scenarios of WAAS/GY

weighting ratio.

• When computed with mps()

• hetcomb showing the rank for mean performance and stability in the different weights.

Author(s)

Tiago Olivoto <tiagoolivoto@gmail.com>

References

Olivoto, T., A.D.C. Lúcio, J.A.G. da silva, V.S. Marchioro, V.Q. de Souza, and E. Jost. 2019. Mean
performance and stability in multi-environment trials I: Combining features of AMMI and BLUP
techniques. Agron. J. doi:10.2134/agronj2019.03.0220

See Also

resca(), mps(), mtmps()

Examples

library(metan)
using the WAASB as statistic and BLUP as mean performance
the same as using waasb()

model <- mps(data_ge2,
env = ENV,
gen = GEN,
rep = REP,
resp = PH)

scenarios <- wsmp(model)

https://doi.org/10.2134/agronj2019.03.0220

Index

∗ data
data_alpha, 53
data_g, 54
data_ge, 55
data_ge2, 56
int.effects, 119
meansGxE, 130

acv, 6
acv(), 91, 106
add_class (utils_class), 261
add_cols (utils_rows_cols), 274
add_prefix (utils_rows_cols), 274
add_row_id (utils_rows_cols), 274
add_rows (utils_rows_cols), 274
add_seq_block (utils_data_org), 263
add_suffix (utils_rows_cols), 274
all_lower_case (utils_num_str), 268
all_pairs (utils_rows_cols), 274
all_title_case (utils_num_str), 268
all_upper_case (utils_num_str), 268
alpha_color (themes), 255
ammi_indexes, 8
ammi_indexes(), 84, 91, 104, 106, 136
Annicchiarico, 11
Annicchiarico(), 104, 244, 255
anova_ind, 12
anova_ind(), 15, 84, 91
anova_joint, 14
anova_joint(), 84, 91
arrange_ggplot, 16
as.character(), 259
as.factor(), 259
as.integer(), 259
as.logical(), 259
as.lpcor, 17
as.numeric(), 259
as.split_factors (split_factors), 252
as_character (utils_as), 259
as_factor (utils_as), 259

as_integer (utils_as), 259
as_logical (utils_as), 259
as_numeric (utils_as), 259
av_dev (utils_stats), 281
ave_dev (utils_stats), 281

barplots, 18
base::intersect(), 280
base::setdiff(), 280
base::union(), 280
bind_cv, 23
bind_cv(), 162
blup_indexes, 24
blup_indexes(), 24, 84, 91, 104

can_corr, 26
can_corr(), 84
ci_mean_t (utils_stats), 281
ci_mean_z (utils_stats), 281
clip_read (utils_data), 262
clip_write (utils_data), 262
clustering, 28
clustering(), 83
coincidence_index, 31
colindiag, 32
colnames_to_lower (utils_rows_cols), 274
colnames_to_title (utils_rows_cols), 274
colnames_to_upper (utils_rows_cols), 274
column_exists (utils_rows_cols), 274
column_to_first (utils_rows_cols), 274
column_to_last (utils_rows_cols), 274
column_to_rownames (utils_rows_cols),

274
comb_vars, 33
concatenate (utils_rows_cols), 274
corr_ci, 35
corr_coef, 37
corr_coef(), 39, 143, 144
corr_focus, 39
corr_plot, 39

302

INDEX 303

corr_ss, 43
corr_stab_ind, 44
correlated_vars, 34
covcor_design, 45
cv (utils_stats), 281
cv_ammi, 47
cv_ammi(), 51, 53, 162
cv_ammif, 49
cv_ammif(), 48, 53, 162, 209, 210
cv_blup, 51
cv_blup(), 48, 51, 162
cv_by (utils_stats), 281

data_alpha, 53
data_g, 54
data_ge, 55
data_ge2, 56
data_simula, 57
desc_stat, 59
desc_stat(), 282
desc_wider (desc_stat), 59
df_to_selegen_54 (utils_data_org), 263
difference_var (Select_helper), 245
doo, 62
dplyr::group_by(), 26–28, 32, 36, 37, 45,

46, 59, 60, 69, 72, 75, 79, 109, 124,
126, 135, 149, 151, 279, 294

ecovalence, 63
ecovalence(), 12, 84, 91, 98, 103, 104, 106,

244, 255
env_dissimilarity, 64
env_dissimilarity(), 67, 165
env_stratification, 66
env_stratification(), 165
extract_number (utils_num_str), 268
extract_string (utils_num_str), 268

fai_blup, 67
fai_blup(), 86, 250
fill_na (utils_na_zero), 266
find_outliers, 69
find_text_in_num (utils_num_str), 268
first_upper_case (utils_num_str), 268
Fox, 70
Fox(), 84, 91, 106
freq_hist (utils_stats), 281
freq_table (utils_stats), 281
freq_table(), 284

g_simula (data_simula), 57
gafem, 71, 258
gafem(), 84, 91, 131, 132
gai, 73
gai(), 84, 91, 105, 106
gamem, 75
gamem(), 54, 72, 73, 84, 91, 131, 132, 207,

222, 250
gamem_met, 78
gamem_met(), 24, 135
ge_acv, 91
ge_acv(), 84, 91, 104
ge_cluster, 93
ge_details, 95
ge_effects, 96
ge_factanal, 97
ge_factanal(), 174, 175
ge_means, 98
ge_means(), 84, 91
ge_plot, 99
ge_plot(), 171
ge_polar, 101
ge_polar(), 91, 104, 106
ge_reg, 102
ge_reg(), 84, 91, 98, 104, 106
ge_simula (data_simula), 57
ge_stats, 103
ge_stats(), 12, 44, 98, 103, 244, 255
ge_winners, 106
get_corvars, 81
get_covmat, 82
get_dist, 83
get_level_size (utils_rows_cols), 274
get_levels (utils_rows_cols), 274
get_levels_comb (utils_rows_cols), 274
get_model_data, 84
get_model_data(), 15, 73, 77, 80, 140, 143,

153, 291, 296
get_wd_here (utils_wd), 286
get_wd_here(), 286
gge, 108
gge(), 111, 113, 176
ggplot2::ggsave(), 203
ggplot2::theme(), 22, 61, 69, 100, 122, 157,

163, 169, 171, 173, 175, 178, 180,
182, 184, 185, 187, 192, 195, 198,
199, 202, 206, 241, 255

ggplot_color (themes), 255

304 INDEX

gmd (get_model_data), 84
gmean (utils_stats), 281
grDevices::colors(), 255
gtb, 110
gtb(), 176
gytb, 112
gytb(), 84, 176

has_class (utils_class), 261
has_na (utils_na_zero), 266
has_text_in_num (utils_num_str), 268
has_zero (utils_na_zero), 266
hmean (utils_stats), 281
hmgv (blup_indexes), 24
hmgv(), 24, 106
hmrpgv (blup_indexes), 24
hmrpgv(), 24, 106
Huehn, 114
Huehn(), 105, 106

impute_missing_val, 115
impute_missing_val(), 109, 153, 295, 298
inspect, 117
int.effects, 119
int.effects(), 130
intersect_var (Select_helper), 245
is.lpcor, 119
is.split_factors (split_factors), 252
is_balanced_trial, 120

kurt (utils_stats), 281

lapply(), 272
lineplots, 121
lower_case_only (Select_helper), 245
lpcor, 123

mahala, 125
mahala_design, 126
make_long, 127
make_lower_tri (utils_mat), 265
make_lower_upper (utils_mat), 265
make_mat, 128
make_sym (utils_mat), 265
make_upper_tri (utils_mat), 265
mantel_test, 129
mantel_test(), 148
max_by (utils_stats), 281
mean_by (utils_stats), 281

means_by (utils_stats), 281
meansGxE, 130
metan, 130
mgidi, 131
mgidi(), 72, 75, 84, 87, 91, 138, 140, 143, 250
min_by (utils_stats), 281
mps, 134
mps(), 91, 140, 181, 300, 301
mtmps, 138
mtmps(), 91, 138, 301
mtsi, 141
mtsi(), 80, 87, 91, 138, 250, 294, 296

n_by (utils_stats), 281
n_missing (utils_stats), 281
n_unique (utils_stats), 281
n_valid (utils_stats), 281
network_plot, 143
non_collinear_vars, 145

open_wd (utils_wd), 286
open_wd(), 286
open_wd_here (utils_wd), 286
open_wd_here(), 286

pairs_mantel, 146
pairs_mantel(), 83, 130
patchwork::plot_annotation(), 16
patchwork::wrap_plots(), 16, 170, 192,

242
path_coeff, 149, 150
path_coeff_mat (path_coeff), 149
path_coeff_seq (path_coeff), 149
performs_ammi, 152
performs_ammi(), 84, 91, 201, 209
plaisted_peterson, 154
plot.anova_joint, 155
plot.can_cor, 156
plot.clustering, 158
plot.corr_coef, 160
plot.corr_coef(), 44, 165
plot.correlated_vars, 159
plot.cvalidation, 162
plot.env_dissimilarity, 164
plot.env_stratification, 165
plot.fai_blup, 166
plot.gafem, 167
plot.gamem, 168
plot.ge_cluster, 170

INDEX 305

plot.ge_effects, 171
plot.ge_factanal, 172
plot.ge_reg, 174
plot.gge, 176
plot.mgidi, 179
plot.mtmps, 181
plot.mtsi, 183
plot.path_coeff, 185
plot.performs_ammi, 186
plot.resp_surf, 187
plot.sh, 188
plot.waas, 189
plot.waasb, 190
plot.wsmp, 193
plot_bars (barplots), 18
plot_bars(), 123
plot_blup, 194
plot_ci, 196
plot_eigen, 198
plot_eigen(), 204
plot_factbars (barplots), 18
plot_factbars(), 123
plot_factlines (lineplots), 121
plot_factlines(), 22
plot_lines (lineplots), 121
plot_lines(), 22
plot_scores, 200
plot_scores(), 80, 196, 200, 206, 296
plot_waasby, 205
plot_waasby(), 196, 200
predict.gamem, 207
predict.gge, 208
predict.performs_ammi, 209
predict.waas, 210
predict.waasb, 211
print.ammi_indexes, 212
print.Annicchiarico, 213
print.anova_ind, 214
print.anova_joint, 214
print.can_cor, 215
print.coincidence, 216
print.colindiag, 217
print.corr_coef, 217
print.ecovalence, 218
print.env_dissimilarity, 219
print.env_stratification, 220
print.Fox, 221
print.gamem, 221

print.ge_factanal, 222
print.ge_reg, 223
print.ge_stats, 224
print.Huehn, 225
print.lpcor, 225
print.mgidi, 226
print.mtmps, 227
print.mtsi, 228
print.path_coeff, 229
print.performs_ammi, 230
print.plaisted_peterson, 230
print.Schmildt, 231
print.sh, 232
print.Shukla, 233
print.superiority, 234
print.Thennarasu, 235
print.waas, 235
print.waas_means, 237
print.waasb, 236
progress (utils_progress), 272
progress(), 272, 273
prop_na (utils_na_zero), 266
pseudo_sigma (utils_stats), 281
purrr::map(), 272

random_na (utils_na_zero), 266
range_data (utils_stats), 281
rbind_fill_id (utils_bind), 260
rbind_fill_id(), 260
recode_factor (utils_data_org), 263
remove_class (utils_class), 261
remove_cols (utils_rows_cols), 274
remove_cols_all_na (utils_na_zero), 266
remove_cols_na (utils_na_zero), 266
remove_cols_zero (utils_na_zero), 266
remove_rownames (utils_rows_cols), 274
remove_rows (utils_rows_cols), 274
remove_rows_all_na (utils_na_zero), 266
remove_rows_na (utils_na_zero), 266
remove_rows_zero (utils_na_zero), 266
remove_space (utils_num_str), 268
remove_strings (utils_num_str), 268
reorder_cols (utils_rows_cols), 274
reorder_cormat, 238
replace_na (utils_na_zero), 266
replace_number (utils_num_str), 268
replace_string (utils_num_str), 268
replace_zero (utils_na_zero), 266
resca, 239

306 INDEX

resca(), 301
residual_plots, 240
residual_plots(), 155, 167, 186, 190
resp_surf, 242
round_cols (utils_num_str), 268
row_col_mean (utils_stats), 281
row_col_sum (utils_stats), 281
rownames_to_column (utils_rows_cols),

274
rpgv (blup_indexes), 24
rpgv(), 24, 106
run_progress (utils_progress), 272
run_progress(), 272, 273

sample_random (utils_samples), 279
sample_random(), 279
sample_systematic (utils_samples), 279
sample_systematic(), 279
Schmildt, 243
sd_amo (utils_stats), 281
sd_by (utils_stats), 281
sd_pop (utils_stats), 281
sel_gen (get_model_data), 84
select_cols (utils_rows_cols), 274
select_cols(), 246
select_cols_na (utils_na_zero), 266
select_cols_zero (utils_na_zero), 266
select_first_col (utils_rows_cols), 274
Select_helper, 245
select_last_col (utils_rows_cols), 274
select_non_numeric_cols

(utils_rows_cols), 274
select_numeric_cols (utils_rows_cols),

274
select_pred, 247
select_rows (utils_rows_cols), 274
select_rows_na (utils_na_zero), 266
select_rows_zero (utils_na_zero), 266
sem (utils_stats), 281
sem_by (utils_stats), 281
set_class (utils_class), 261
set_difference (utils_sets), 280
set_intersect (utils_sets), 280
set_union (utils_sets), 280
set_wd_here (utils_wd), 286
set_wd_here(), 286
Shukla, 248
Shukla(), 84, 91, 104, 106
skew (utils_stats), 281

Smith_Hazel, 249
Smith_Hazel(), 88
solve_svd, 251
split_factors, 252
stars_pval, 253
stats::cor, 37
stats::cor(), 39, 144, 146, 150
stats::hclust(), 164
stats::plot.lm(), 150
stats::TukeyHSD(), 258
sum_by (utils_stats), 281
sum_dev (utils_stats), 281
sum_sq (utils_stats), 281
sum_sq_dev (utils_stats), 281
superiority, 254
superiority(), 12, 84, 91, 98, 103, 104, 106,

244
Sys.sleep(), 273

t(), 257
theme_metan (themes), 255
theme_metan_minimal (themes), 255
themes, 255
Thennarasu, 256
Thennarasu(), 105, 106
tibble::formatting(), 218, 232
tibble::print(), 212–218, 221–237
tidy_colnames (utils_rows_cols), 274
tidy_strings (utils_num_str), 268
tidy_strings(), 275
tidy_sym (utils_mat), 265
title_case_only (Select_helper), 245
transparent_color (themes), 255
transpose_df, 257
tukey_hsd, 258

union_var (Select_helper), 245
upper_case_only (Select_helper), 245
utils::read.table(), 263
utils_as, 259
utils_bind, 260
utils_class, 261
utils_data, 262
utils_data_org, 263
utils_mat, 265
utils_na_zero, 266
utils_num_str, 268
utils_progress, 272
utils_rows_cols, 274

INDEX 307

utils_samples, 279
utils_sets, 280
utils_stats, 281
utils_wd, 286

var_amo (utils_stats), 281
var_by (utils_stats), 281
var_pop (utils_stats), 281
venn_plot, 287

waas, 289
waas(), 80, 84, 91, 106, 141, 152, 153, 201,

210, 296, 299–301
waas_means, 297
waas_means(), 153, 201, 291
waasb, 292
waasb(), 24, 77, 84, 91, 106, 141, 143, 153,

201, 211, 291, 299–301
width_greater_than (Select_helper), 245
width_less_than (Select_helper), 245
width_of (Select_helper), 245
wsmp, 300
wsmp(), 152

	acv
	ammi_indexes
	Annicchiarico
	anova_ind
	anova_joint
	arrange_ggplot
	as.lpcor
	barplots
	bind_cv
	blup_indexes
	can_corr
	clustering
	coincidence_index
	colindiag
	comb_vars
	correlated_vars
	corr_ci
	corr_coef
	corr_focus
	corr_plot
	corr_ss
	corr_stab_ind
	covcor_design
	cv_ammi
	cv_ammif
	cv_blup
	data_alpha
	data_g
	data_ge
	data_ge2
	data_simula
	desc_stat
	doo
	ecovalence
	env_dissimilarity
	env_stratification
	fai_blup
	find_outliers
	Fox
	gafem
	gai
	gamem
	gamem_met
	get_corvars
	get_covmat
	get_dist
	get_model_data
	ge_acv
	ge_cluster
	ge_details
	ge_effects
	ge_factanal
	ge_means
	ge_plot
	ge_polar
	ge_reg
	ge_stats
	ge_winners
	gge
	gtb
	gytb
	Huehn
	impute_missing_val
	inspect
	int.effects
	is.lpcor
	is_balanced_trial
	lineplots
	lpcor
	mahala
	mahala_design
	make_long
	make_mat
	mantel_test
	meansGxE
	metan
	mgidi
	mps
	mtmps
	mtsi
	network_plot
	non_collinear_vars
	pairs_mantel
	path_coeff
	performs_ammi
	plaisted_peterson
	plot.anova_joint
	plot.can_cor
	plot.clustering
	plot.correlated_vars
	plot.corr_coef
	plot.cvalidation
	plot.env_dissimilarity
	plot.env_stratification
	plot.fai_blup
	plot.gafem
	plot.gamem
	plot.ge_cluster
	plot.ge_effects
	plot.ge_factanal
	plot.ge_reg
	plot.gge
	plot.mgidi
	plot.mtmps
	plot.mtsi
	plot.path_coeff
	plot.performs_ammi
	plot.resp_surf
	plot.sh
	plot.waas
	plot.waasb
	plot.wsmp
	plot_blup
	plot_ci
	plot_eigen
	plot_scores
	plot_waasby
	predict.gamem
	predict.gge
	predict.performs_ammi
	predict.waas
	predict.waasb
	print.ammi_indexes
	print.Annicchiarico
	print.anova_ind
	print.anova_joint
	print.can_cor
	print.coincidence
	print.colindiag
	print.corr_coef
	print.ecovalence
	print.env_dissimilarity
	print.env_stratification
	print.Fox
	print.gamem
	print.ge_factanal
	print.ge_reg
	print.ge_stats
	print.Huehn
	print.lpcor
	print.mgidi
	print.mtmps
	print.mtsi
	print.path_coeff
	print.performs_ammi
	print.plaisted_peterson
	print.Schmildt
	print.sh
	print.Shukla
	print.superiority
	print.Thennarasu
	print.waas
	print.waasb
	print.waas_means
	reorder_cormat
	resca
	residual_plots
	resp_surf
	Schmildt
	Select_helper
	select_pred
	Shukla
	Smith_Hazel
	solve_svd
	split_factors
	stars_pval
	superiority
	themes
	Thennarasu
	transpose_df
	tukey_hsd
	utils_as
	utils_bind
	utils_class
	utils_data
	utils_data_org
	utils_mat
	utils_na_zero
	utils_num_str
	utils_progress
	utils_rows_cols
	utils_samples
	utils_sets
	utils_stats
	utils_wd
	venn_plot
	waas
	waasb
	waas_means
	wsmp
	Index

