
Package ‘sevenbridges2’
March 25, 2025

Type Package

Title The 'Seven Bridges Platform' API Client

Version 0.4.0

Maintainer Marko Trifunovic <marko.trifunovic@velsera.com>

Description R client and utilities for 'Seven Bridges Platform' API, from 'Cancer Genomics Cloud'
to other 'Seven Bridges' supported platforms. API documentation is hosted publicly
at <https://docs.sevenbridges.com/docs/the-api>.

License Apache License 2.0

Encoding UTF-8

VignetteBuilder knitr

URL https://www.sevenbridges.com,

https://sbg.github.io/sevenbridges2/,

https://github.com/sbg/sevenbridges2

Depends R (>= 4.2.0)

RoxygenNote 7.3.2

Imports httr, R6, purrr, jsonlite, cli, rlang, curl, glue, stringr,
utils, checkmate, DescTools, yaml, readr, data.table

Suggests knitr, rmarkdown, testthat (>= 3.0.0), stringi, withr,
remotes, pkgdown

Config/testthat/edition 3

Config/testthat/parallel true

Language en-US

BugReports https://github.com/sbg/sevenbridges2/issues

NeedsCompilation no

Author Marko Trifunovic [aut, cre],
Marija Gacic [aut],
Vladimir Obucina [aut],
Velsera [cph, fnd]

Repository CRAN

Date/Publication 2025-03-25 22:50:02 UTC

1

https://docs.sevenbridges.com/docs/the-api
https://www.sevenbridges.com
https://sbg.github.io/sevenbridges2/
https://github.com/sbg/sevenbridges2
https://github.com/sbg/sevenbridges2/issues

2 Contents

Contents

api . 3
App . 4
Apps . 14
AsyncJob . 20
Auth . 22
Billing . 32
Billing_groups . 39
Collection . 41
Division . 46
Divisions . 51
Export . 53
Exports . 56
File . 64
Files . 79
Import . 94
Imports . 97
Invoice . 105
Invoices . 108
Item . 111
Member . 112
Part . 114
Permission . 118
prepare_items_for_bulk_export . 121
prepare_items_for_bulk_import . 123
Project . 125
Projects . 148
Rate . 153
Resource . 155
Task . 156
Tasks . 170
Team . 176
Teams . 181
Upload . 184
User . 189
Volume . 191
VolumeContentCollection . 210
VolumeFile . 214
VolumePrefix . 219
Volumes . 224

Index 238

api 3

api Core HTTP logic for Seven Bridges API

Description

Used for advanced users and the core method for higher level API in this package.

Usage

api(
token = NULL,
path = NULL,
method = c("GET", "POST", "PUT", "DELETE", "PATCH"),
query = NULL,
body = list(),
encode = c("json", "form", "multipart"),
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
advance_access = getOption("sevenbridges2")$advance_access,
authorization = FALSE,
fields = "_all",
base_url = NULL,
url = NULL,
...

)

Arguments

token API authentication token or access_token for Seven Bridges single sign-on.
Authentication token uniquely identifies you on the Seven Bridges Platform and
has all your data access, app management and task execution permissions. Read
more about its usage here.

path Path connected with base_url.

method One of "GET", "POST", "PUT", "DELETE", or "PATCH".

query Query parameters passed to httr package GET/POST call.

body Body content passed to httr package GET/POST/PUT/DELETE/PATCH call.

encode If the body is a named list, how should it be encoded? Can be one of "json" (ap-
plication/json), "form" (application/x-www-form-urlencoded), or "multipart"
(multipart/form-data). Default is "json". For "multipart", list elements can
be strings or objects created by httr::upload_file(). For "form", elements
are coerced to strings and escaped, use I() to prevent double-escaping. For
"json", parameters are automatically "unboxed" (i.e. length 1 vectors are con-
verted to scalars). To preserve a length 1 vector as a vector, wrap in I().

limit The maximum number of collection items to return for a single request. Mini-
mum value is 1. The maximum value is 100 and the default value is 50. This is
a pagination-specific attribute.

https://docs.sevenbridges.com/docs/get-your-authentication-token

4 App

offset The zero-based starting index in the entire collection of the first item to return.
The default value is 0. This is a pagination-specific attribute.

advance_access Enable advance access features? Default is FALSE.

authorization Is the token an API authentication token (FALSE) or an access token from the
Seven Bridges single sign-on (TRUE)?

fields Selector specifying a subset of fields to include in the response. All API calls
take this optional query parameter. This parameter enables you to specify the
fields you want to be returned when listing resources (e.g. all your projects) or
getting details of a specific resource (e.g. a given project).

For example, fields="id,name,size" to return the fields id, name and size
for files. Default value is set to _all, so all fields are always returned for each
resource. More details please check here.

base_url Platform URL, default is NULL.

url Full url of the resource. If url is provided, other parameters like base_url,
path, query, limit, offset and fields will be ignored.

... Other arguments passed to GET/POST/PUT/DELETE/PATCH call.

Value

Response in form of a list.

References

https://docs.sevenbridges.com/page/api

Examples

token <- "your_token"
list projects
Not run:
api(token = token, path = "projects", method = "GET")

End(Not run)

App R6 Class representing an app

Description

R6 Class representing a resource for managing apps.

Super class

sevenbridges2::Item -> App

https://docs.sevenbridges.com/docs/the-api#section-general-api-information
https://docs.sevenbridges.com/page/api

App 5

Public fields

URL List of URL endpoints for this resource.

id Character used as an app ID - short app name.

project Project ID if any, when returned by an API call.

name App name.

revision App’s revision number.

copy_of The original application of which this is a copy.

latest_revision App’s latest revision number.

raw App’s raw CWL (JSON or YAML).

Methods

Public methods:
• App$new()

• App$print()

• App$reload()

• App$copy()

• App$get_revision()

• App$create_revision()

• App$sync()

• App$input_matrix()

• App$output_matrix()

• App$create_task()

• App$clone()

Method new(): Create a new App object.

Usage:
App$new(res = NA, ...)

Arguments:
res Response containing App object information.
... Other response arguments.

Returns: A new App object.

Method print(): Print method for App class.

Usage:
App$print()

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,

6 App

auth = auth,
response = attr(x, "response")

)
app_object$print()

}

Method reload(): Reload App object information. Suitable also for loading raw CWL in the
’raw’ field, if it’s not already populated.

Usage:
App$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: App object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$reload()

}

Method copy(): A method that copies the current app to the specified project.

Usage:
App$copy(project, name = NULL, strategy = "clone", use_revision = FALSE, ...)

Arguments:
project Project object or project ID. If you opt for the latter, remember that the project ID

should be specified in <project_owner>/<project-name> format, e.g.
rfranklin/my-project, or as <division>/<project-name> depending on the account
type.

name The new name for the app in the target project (optional).
strategy The method for copying the app. Supported strategies:

• clone - copy all revisions; get updates from the same app as the copied app (default)
• direct: copy latest revision; get updates from the copied app
• clone_direct: copy all revisions; get updates from the copied app
• transient: copy latest revision; get updates from the same app as the copied app.

use_revision Parameter specifying which app’s revision should be copied. If set to FALSE
(default), the latest revision of the app will be copied.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied App object.

Examples:

App 7

\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$copy(project)

}

Method get_revision(): Get app’s revision.

Usage:
App$get_revision(revision = self$revision, in_place = FALSE, ...)

Arguments:

revision Revision of the app.
in_place If TRUE, replace current app object with new for specified app revision.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call allows you to obtain a particular revision of an app, which is not necessarily
the most recent version.

Returns: App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$get_revision()

}

Method create_revision(): Create a new app revision.

Usage:
App$create_revision(
raw = NULL,
from_path = NULL,
raw_format = c("JSON", "YAML"),
in_place = FALSE,
...

)

Arguments:

8 App

raw A list containing a raw CWL for the app revision you are about to create. To generate such
a list, you might want to load some existing JSON / YAML file. In case that your CWL
file is in JSON format, please use the fromJSON function from the jsonlite package to
minimize potential problems with parsing the JSON file. If you want to load a CWL file
in YAML format, it is highly recommended to use the read_yaml function from the yaml
package. Keep in mind that this parameter should not be used together with the file_path
parameter.

from_path A path to a file containing the raw CWL for the app (JSON or YAML). This param-
eter should not be used together with the raw parameter.

raw_format The type of format used (JSON or YAML).
in_place If TRUE, replace current app object with newly created revision.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call creates a new revision for an existing app. It adds a new CWL app descrip-
tion, and stores it as the named revision for the specified app. The revision number must not
already exist and should follow the sequence of previously created revisions.

More documentation about how to create the app via API can be found here.

Returns: App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create App object using raw CWL
app_object$create_revision(raw)

}

Method sync(): Synchronize a copied app with its parent app.

Usage:
App$sync(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Details: This call synchronizes a copied app with the source app from which it has been copied.

Returns: App object.

Examples:

\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,

https://docs.sevenbridges.com/reference/add-an-app-using-raw-cwl

App 9

href = x$href,
auth = auth,
response = attr(x, "response")

)

app_object$sync()
}

Method input_matrix(): Get an input matrix for the app, listing expected inputs (required or
optional) along with their types, descriptions, etc.

Usage:
App$input_matrix()

Returns: Data frame.

Method output_matrix(): Get an output matrix for the app, listing expected outputs of tasks
that run this app, along with their types, descriptions, etc.

Usage:
App$output_matrix()

Returns: Data frame.

Method create_task(): This call creates a new task. You can create either a single task or a
batch task by using the app’s default batching, override batching, or disable batching completely.
A parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. The documentation on batching tasks for more details on batching
criteria.

Usage:
App$create_task(
project,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:

project The ID string of a project or a Project object where you want to create the task in.
revision The app revision (version) number.
name The name of the task.

https://docs.sevenbridges.com/docs/about-batch-analyses
https://docs.sevenbridges.com/docs/app-versions

10 App

description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:

execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:

inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Parts of the path enclosed in
angle brackets <> are tokens that are dynamically replaced with corresponding values
during task execution.

https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

App 11

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:

b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for
which you want to define the output location, while the parameters
are defined as follows:

– output_location - Can be a path within the project in which the task is created, for
example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:

batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.
... Other arguments that can be passed to core api() function like ’fields’, etc.

https://docs.sevenbridges.com/docs/about-spot-instances

12 App

Returns: Task object.

Examples:
\dontrun{
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create a DRAFT task
app_object$create_task(project = project)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
App$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `App$print`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$print()

End(Not run)

--
Method `App$reload`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

App 13

)
app_object$reload()

End(Not run)

--
Method `App$copy`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$copy(project)

End(Not run)

--
Method `App$get_revision`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
app_object$get_revision()

End(Not run)

--
Method `App$create_revision`
--

Not run:
x is API response when app is requested
app_object <- App$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create App object using raw CWL
app_object$create_revision(raw)

14 Apps

End(Not run)

--
Method `App$sync`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

app_object$sync()

End(Not run)

--
Method `App$create_task`
--

Not run:
x is API response when app is requested
app_object <- App$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Create a DRAFT task
app_object$create_task(project = project)

End(Not run)

Apps R6 Class representing the apps endpoint

Description

R6 Class representing the apps resource endpoint.

Super class

sevenbridges2::Resource -> Apps

Apps 15

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Apps$new()

• Apps$query()

• Apps$get()

• Apps$copy()

• Apps$create()

• Apps$clone()

Method new(): Create a new Apps resource object.

Usage:
Apps$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists all the apps available to you.

Usage:
Apps$query(
project = NULL,
visibility = c("private", "public"),
query_terms = NULL,
id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
fields = "!raw",
...

)

Arguments:

project Project ID string in the form <project_owner>/<project_short_name> or
<division_name>/<project_short_name> or Project object,
to restrict the results to apps from that project only.

visibility Set this to public to see all public apps on the Seven Bridges Platform.
query_terms A list of search terms used to filter apps based on their details. Each term is

case-insensitive and can relate to the app’s name, label, toolkit, toolkit version, category,
tagline, or description. You can provide a single term (e.g., list("Compressor")) or mul-
tiple terms (e.g., list("Expression", "Abundance")) to search for apps that match all
the specified terms. If a term matches any part of the app’s details, the app will be included
in the results. Search terms can also include phrases (e.g., list("Abundance estimates
input")), which will search for exact matches within app descriptions or other fields.

id Use this parameter to query apps based on their ID.

16 Apps

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. For querying apps, it is
set to return all fields except ’raw’ which stores CWL as a list. Be cautious when requesting
all fields, as this API request may take a long time to execute.

... Other arguments that can be passed to core api() function.
Returns: Collection containing App objects.
Examples:
\dontrun{
apps_object <- Apps$new(
auth = auth

)

List public apps
apps_object$query(visibility = "public")

}

Method get(): This call returns information about the specified app. The app must be in a
project you can access. It could be an app uploaded to the Seven Bridges Platform by a project
member or a public app copied into the project.
You can find more details about this operation in our API documentation.

Usage:
Apps$get(id, revision = NULL, ...)

Arguments:
id The full <project_id>/<app_short_name> path for this API call is known as App ID. You

can also get the App ID for an app by making the call to list all apps available to you.
revision The number of the app revision you want to get.
... Other arguments that can be passed to core api() function like ’fields’, etc.
Returns: App object.
Examples:
\dontrun{
apps_object <- Apps$new(
auth = auth

)

Get app object
apps_object$get(id = "<some_id>")

}

Method copy(): This call copies the specified app to the specified project. The app must be in
a project you can access. It could be an app uploaded to the Seven Bridges Platform by a project
member or a public app copied into the project.

https://docs.sevenbridges.com/reference/get-details-of-an-app

Apps 17

Usage:
Apps$copy(
app,
project,
name = NULL,
strategy = c("clone", "direct", "clone_direct", "transient"),
...

)

Arguments:

app App object or the short name of the app you are copying. Optionally, to copy a specific
revision of the app, use the <app_short_name>/<revision_number> format, for example
rfranklin/my-project/bamtools-index-2-4-0/1

project The Project object or project ID you want to copy the app to.
name The new name the app will have in the target project. If its name will not change, omit

this key.
strategy The method for copying the app. Can be one of:

• clone : copy all revisions; get updates from the same app as the copied app (default);
• direct: copy latest revision; get updates from the copied app;
• clone_direct: copy all revisions; get updates from the copied app;
• transient: copy latest revision; get updates from the same app as the copied app.
Read more about the strategies here.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied App object.

Examples:

\dontrun{
apps_object <- Apps$new(
auth = auth

)
Copy app object to a project
apps_object$copy(app = app, project = project)

}

Method create(): This call allows you to add an app using raw CWL.

Usage:
Apps$create(
raw = NULL,
from_path = NULL,
project,
name,
raw_format = c("JSON", "YAML"),
...

)

Arguments:

https://docs.sevenbridges.com/reference/copy-an-app#methods-for-copying-an-app

18 Apps

raw The body of the request should be a CWL app description saved as a JSON or YAML file. For
a template of this description, try making the call to get raw CWL for an app about an app
already in one of your projects. Shouldn’t be used together with from_path parameter.

from_path File containing CWL app description. Shouldn’t be used together with raw param-
eter.

project String project ID or Project object in which you want to store the app.
name A short name for the app (without any non-alphanumeric characters or spaces)
raw_format The type of format used (JSON or YAML).
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: App object.

Examples:

\dontrun{
apps_object <- Apps$new(
auth = auth

)

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Apps$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Apps$query`
--

Not run:
apps_object <- Apps$new(

auth = auth
)

List public apps
apps_object$query(visibility = "public")

End(Not run)

Apps 19

--
Method `Apps$get`
--

Not run:
apps_object <- Apps$new(

auth = auth
)

Get app object
apps_object$get(id = "<some_id>")

End(Not run)

--
Method `Apps$copy`
--

Not run:
apps_object <- Apps$new(

auth = auth
)
Copy app object to a project
apps_object$copy(app = app, project = project)

End(Not run)

--
Method `Apps$create`
--

Not run:
apps_object <- Apps$new(

auth = auth
)

Create new app object
apps_object$create(
raw = raw,
project = project,
name = name,
raw_format = "YAML"
)

End(Not run)

20 AsyncJob

AsyncJob R6 Class representing an AsyncJob

Description

R6 Class representing a resource for managing asynchronous jobs.

Super class

sevenbridges2::Item -> AsyncJob

Public fields

id Asynchronous job ID.

type The type of job. Can be one of: COPY, DELETE, MOVE.

state The following states are available: SUBMITTED, RESOLVING, RUNNING and FIN-
ISHED.

result The result of the job.

total_files The total number of files that were processed for the job.

completed_files The number of files that were successfully completed.

failed_files The number of files that failed.

started_on The time and date the job started.

finished_on The time and date the job finished.

Methods

Public methods:
• AsyncJob$new()

• AsyncJob$print()

• AsyncJob$reload()

• AsyncJob$clone()

Method new(): Create a new AsyncJob object.

Usage:
AsyncJob$new(res = NA, ...)

Arguments:

res Response containing AsyncJob object information.
... Other response arguments.

Returns: A new AsyncJob object.

Method print(): Print method for AsyncJob class.

Usage:

AsyncJob 21

AsyncJob$print()

Examples:

\dontrun{
x is API response when app is requested
asyncjob_object <- AsyncJob$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
asyncjob_object$print()

}

Method reload(): Reloads AsyncJob object information.

Usage:
AsyncJob$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: AsyncJob object.

Examples:

\dontrun{
x is API response when AsyncJob is requested
asyncjob_object <- AsyncJob$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
asyncjob_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
AsyncJob$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `AsyncJob$print`
--

Not run:
x is API response when app is requested
asyncjob_object <- AsyncJob$new(

22 Auth

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
asyncjob_object$print()

End(Not run)

--
Method `AsyncJob$reload`
--

Not run:
x is API response when AsyncJob is requested
asyncjob_object <- AsyncJob$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
asyncjob_object$reload()

End(Not run)

Auth R6 Class Representing Authentication Object

Description

Authentication object with methods for accessing API endpoints. Every object could be requested
from this Auth object and any action could start from this object using cascading style. Please
check vignette("Authentication_and_Billing", package = "sevenbridges2") for more in-
formation.

Details

This is the main object for authentication to platforms powered by Seven Bridges.

Public fields

from Authentication method.

platform The platform to use.

url Base URL for API.

sysenv_url Name of the system environment variable storing the API base URL.

sysenv_token Name of the system environment variable storing the auth token.

config_file Location of the user configuration file.

Auth 23

profile_name Profile name in the user configuration file.
fs FS (FileSystem) object, for mounting and unmounting the file system.
authorization Is the token an API authentication token (FALSE) or an access token from the

Seven Bridges single sign-on (TRUE)?
projects Projects object, for accessing projects resources on the platform.
files Files object, for accessing files resources on the platform.
apps Apps object, for accessing apps resources on the platform.
volumes Volumes object, for accessing volumes resources on the platform.
tasks Tasks object, for accessing tasks resources on the platform.
imports Storage imports object, for accessing volume imports resources on the platform.
exports Storage exports object, for accessing volume exports resources on the platform.
invoices Invoices object, for accessing invoice resources on the platform.
billing_groups Billing_groups object, for accessing billing groups resources on the platform.
divisions Divisions object, for accessing divisions resources on the platform.
teams Teams object, for accessing teams resources on the platform.

Methods

Public methods:
• Auth$new()

• Auth$get_token()

• Auth$api()

• Auth$user()

• Auth$rate_limit()

• Auth$upload()

• Auth$list_ongoing_uploads()

• Auth$upload_abort()

• Auth$send_feedback()

• Auth$clone()

Method new(): Create a new Seven Bridges API Authentication object. All methods can be
accessed through this object.

Usage:
Auth$new(
from = c("direct", "env", "file"),
platform = NA,
url = NA,
token = NA,
sysenv_url = NA,
sysenv_token = NA,
config_file = NA,
profile_name = NA,
fs = NA,
authorization = FALSE

)

24 Auth

Arguments:
from Authentication method. Could be:

• "direct" - pass the credential information to the arguments directly,
• "env" - read from pre-set system environment variables, or
• "file" - read configurations from a credentials file.
Default is "direct".

platform The platform to use. If neither platform nor url is specified the default is "aws-us"
(Seven Bridges Platform - US). Other possible values include:
• "aws-eu" - Seven Bridges Platform - EU,
• "cgc" - Cancer Genomics Cloud,
• "ali-cn" - Seven Bridges Platform - China,
• "cavatica" - Cavatica, and
• "f4c" - BioData Catalyst Powered by Seven Bridges.

url Base URL for API. Please only use this when you want to specify a platform that is not in
the platform list above, while leaving platform unspecified.

token API authentication token or access_token for Seven Bridges single sign-on. Authen-
tication token uniquely identifies you on the Seven Bridges Platform and has all your data
access, app management and task execution permissions. Read more about its usage here.

sysenv_url Name of the system environment variable storing the API base URL. By default:
"SB_API_ENDPOINT".

sysenv_token Name of the system environment variable storing the auth token. By default:
"SB_AUTH_TOKEN".

config_file Location of the user configuration file.
By default: "~/.sevenbridges/credentials".

profile_name Profile name in the user configuration file. The default value is "default".
fs FS (FileSystem) object, for mount and unmount file system.
authorization Is the token an API authentication token (FALSE) or an access token from the

Seven Bridges single sign-on (TRUE)?

Returns: Auth class object.

Examples:
\dontrun{
Multiple ways to create Auth object

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"

)

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

}

https://docs.sevenbridges.com/docs/get-your-authentication-token

Auth 25

Method get_token(): Returns the authentication token read from system environment variable.

Usage:
Auth$get_token()

Returns: An API authentication token in form of a string.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get that same token
a$get_token()

}

Method api(): This method returns all API paths and pass arguments to core api() function.

Usage:
Auth$api(
...,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
fields = "_all"

)

Arguments:

... Other arguments passed to core api() function, like path, query parameters or full url to
some resource.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

fields Selector specifying a subset of fields to include in the response. This parameter en-
ables you to specify the fields you want to be returned when listing resources (e.g. all your
projects) or getting details of a specific resource (e.g. a given project).

For example, fields="id,name,size" to return the fields id, name and size for files. De-
fault value is set to _all, so all fields are always returned for each resource. More details
please check general API documentation.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",

https://docs.sevenbridges.com/docs/the-api#section-general-api-information

26 Auth

platform = "aws-us"
)

Create API request using request parameters directly
a$api(params)

}

Method user(): Get details about the authenticated user.

Usage:
Auth$user(username = NULL)

Arguments:

username The username of a user for whom you want to get basic account information. If not
provided, information about the currently authenticated user will be returned.

Returns: User class object.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get information about the currently authenticated user
a$user()

}

Method rate_limit(): Get information about current rate limit.

This call returns information about your current rate limit. This is the number of API calls you
can make in one hour. This call also returns information about your current instance limit.

Usage:
Auth$rate_limit()

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get current rate limit
a$rate_limit()

}

Auth 27

Method upload(): This method allows you to upload a single file from your local computer to
the Platform.

Usage:
Auth$upload(
path,
project = NULL,
parent = NULL,
filename = NULL,
overwrite = FALSE,
part_size = getOption("sevenbridges2")$RECOMMENDED_PART_SIZE,
init = FALSE

)

Arguments:

path File path on local disk.
project Project object or its ID. Project should not be used together with parent. If parent

is used, the call will upload the file to the specified Platform folder, within the project to
which the folder belongs. If project is used, the call will upload the file to the root of the
project’s files.

parent Parent folder object (of File class) or its ID. Should not be used together with project.
If parent is used, the call will upload the file to the specified Platform folder, within the
project to which the folder belongs. If project is used, the call will upload the file to the root
of the project’s files.

filename Optional new file name. By default the uploaded file will have the same name as the
original file provided with the path parameter. If its name will not change, omit this key.

overwrite In case there is already a file with the same name in the selected platform project
or folder, this option allows you to control whether that file will be overwritten or not. If
overwrite is set to TRUE and a file already exists under the name specified in the request, the
existing file will be deleted and a new one created in its place.

part_size The preferred size for upload parts in bytes. If omitted or set to a value that is
incompatible with the cloud storage provider, a default value will be used.

init If TRUE, the method will initialize and return the Upload object and stop. If FALSE, the
method will return the Upload object and start the upload process immediately.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create upload job and set destination project
upload_job <- a$upload(
path = "/path/to/your/file.txt",
project = destination_project,
overwrite = TRUE,
init = TRUE

28 Auth

)
}

Method list_ongoing_uploads(): This method returns the list of all ongoing uploads.

Usage:
Auth$list_ongoing_uploads()

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

List ongoing uploads
a$list_ongoing_uploads()

}

Method upload_abort(): This call aborts an ongoing multipart upload.

Usage:
Auth$upload_abort(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that you want to abort.

Examples:
\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Abort upload
a$abort_upload(upload_id = "<id_of_the_upload_process>")

}

Method send_feedback(): Send feedback to Seven Bridges.

Send feedback on ideas, thoughts, and problems via the sevenbridges2 API package with three
available types: idea, thought, and problem. You can send one feedback item per minute.

Usage:
Auth$send_feedback(
text,
type = c("idea", "thought", "problem"),
referrer = NULL

)

Arguments:

Auth 29

text Specifies the content for the feedback i.e. feedback text.
type Specifies the type of feedback. The following are available: idea, thought and problem.
referrer The name of the person submitting the feedback.

Examples:

\dontrun{
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Send feedback
a$send_feedback(
"This is a test for sending feedback via API.",
type = "thought"
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Auth$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Auth$new`
--

Not run:
Multiple ways to create Auth object

Using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Authenticate using environment variables
a <- Auth$new(from = "env")

Authenticate using file configuration
a <- Auth$new(from = "file")

End(Not run)

--

30 Auth

Method `Auth$get_token`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get that same token
a$get_token()

End(Not run)

--
Method `Auth$api`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create API request using request parameters directly
a$api(params)

End(Not run)

--
Method `Auth$user`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get information about the currently authenticated user
a$user()

End(Not run)

--
Method `Auth$rate_limit`
--

Auth 31

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Get current rate limit
a$rate_limit()

End(Not run)

--
Method `Auth$upload`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Create upload job and set destination project
upload_job <- a$upload(

path = "/path/to/your/file.txt",
project = destination_project,
overwrite = TRUE,
init = TRUE

)

End(Not run)

--
Method `Auth$list_ongoing_uploads`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

List ongoing uploads
a$list_ongoing_uploads()

End(Not run)

--
Method `Auth$upload_abort`
--

32 Billing

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Abort upload
a$abort_upload(upload_id = "<id_of_the_upload_process>")

End(Not run)

--
Method `Auth$send_feedback`
--

Not run:
Authenticate using authentication token
a <- Auth$new(
token = "<your_token>",
platform = "aws-us"
)

Send feedback
a$send_feedback(
"This is a test for sending feedback via API.",
type = "thought"
)

End(Not run)

Billing R6 Class representing billing information.

Description

R6 Class representing a central resource for managing billing groups.

Details

This is the main object for Billing

Super class

sevenbridges2::Item -> Billing

Billing 33

Public fields

URL List of URL endpoints for this resource.
id Billing group identifier.
owner Username of the user that owns the billing group.
name Billing group name.
type Billing group type.
pending Billing group approval status.
disabled Indicator of whether the billing group is disabled.
balance Billing group balance.

Methods

Public methods:
• Billing$new()

• Billing$print()

• Billing$reload()

• Billing$analysis_breakdown()

• Billing$storage_breakdown()

• Billing$egress_breakdown()

• Billing$clone()

Method new(): Create a new Billing object.
Usage:
Billing$new(res = NA, ...)

Arguments:
res Response containing Billing object information.
... Other response arguments.

Method print(): Prints billing group information as a bullet list.
Usage:
Billing$print()

Examples:
\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print billing group
billing_object$print()

}

34 Billing

Method reload(): Reload Billing group object.

Usage:
Billing$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,
etc.

Returns: Billing object.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload billing group
billing_object$reload()

}

Method analysis_breakdown(): Method for getting an analysis breakdown for a billing group.

Usage:
Billing$analysis_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

date_from A string representing the starting date for retrieving transactions analysis in the
following format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving transactions analysis in the follow-
ing format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

Billing 35

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get analysis breakdown
billing_object$analysis_breakdown()

}

Method storage_breakdown(): Method for getting a storage breakdown for a billing group.

Usage:
Billing$storage_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

date_from A string representing the starting date for retrieving storage analysis in the follow-
ing format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving storage analysis in the following
format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{

36 Billing

x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get storage breakdown
billing_object$storage_breakdown()

}

Method egress_breakdown(): Method for getting a egress breakdown for a billing group.

Usage:
Billing$egress_breakdown(
date_from = NULL,
date_to = NULL,
invoice = NULL,
fields = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

date_from A string representing the starting date for retrieving egress analysis in the following
format: mm-dd-yyyy.

date_to A string representing the ending date for retrieving egress analysis in the following
format: mm-dd-yyyy.

invoice A string representing invoice ID or Invoice object to show a breakdown for the specific
invoice. If omitted, the current spending breakdown is returned.

fields Selector specifying a subset of fields to include in the response.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function.

Examples:

\dontrun{
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

Billing 37

)

Get egress breakdown
billing_object$egress_breakdown()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Billing$print`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print billing group
billing_object$print()

End(Not run)

--
Method `Billing$reload`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload billing group
billing_object$reload()

End(Not run)

38 Billing

--
Method `Billing$analysis_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get analysis breakdown
billing_object$analysis_breakdown()

End(Not run)

--
Method `Billing$storage_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get storage breakdown
billing_object$storage_breakdown()

End(Not run)

--
Method `Billing$egress_breakdown`
--

Not run:
x is API response when billing group is requested
billing_object <- Billing$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Billing_groups 39

Get egress breakdown
billing_object$egress_breakdown()

End(Not run)

Billing_groups R6 Class representing billing groups endpoints

Description

R6 Class representing billing groups resource endpoints.

Super class

sevenbridges2::Resource -> Billing_groups

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Billing_groups$new()

• Billing_groups$query()

• Billing_groups$get()

• Billing_groups$clone()

Method new(): Create a new Billing_groups object.

Usage:
Billing_groups$new(...)

Arguments:

... Other response arguments.

Method query(): List all your billing groups, including groups that are pending or have been
disabled.

Usage:
Billing_groups$query(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

40 Billing_groups

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like query parameters, ’fields’,
etc.

Returns: Collection of Billing groups.

Examples:
\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth

)

List all your billing groups
billing_groups_object$query()

}

Method get(): Retrieve a single billing group, specified by its ID. To find the billing_group,
use the call Billing_groups$query() to list all your billing groups. The information returned
includes the billing group owner, the total balance, and the status of the billing group (pending or
confirmed).

Usage:
Billing_groups$get(id, ...)

Arguments:
id The ID of the billing group you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Billing object.

Examples:
\dontrun{
billing_groups_object <- Billing_groups$new(
auth = auth

)

Get single billing group
billing_groups_object$get(id = id)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Billing_groups$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Collection 41

Examples

--
Method `Billing_groups$query`
--

Not run:
billing_groups_object <- Billing_groups$new(
auth = auth

)

List all your billing groups
billing_groups_object$query()

End(Not run)

--
Method `Billing_groups$get`
--

Not run:
billing_groups_object <- Billing_groups$new(
auth = auth

)

Get single billing group
billing_groups_object$get(id = id)

End(Not run)

Collection R6 Class representing a Collection of objects

Description

R6 Class representing a resource for managing collections. A wrapper for Seven Bridges pageable
resources. Among the actual collection items it contains information regarding the total number of
entries available on the server and resource API request URL (href).

Public fields

href API request URL.

items Items returned in API response.

links List of links (hrefs) for next and/or previous page resources.

total Total number of items available on the server.

response Raw API response.

auth Seven Bridges Authentication object.

42 Collection

Methods

Public methods:
• Collection$new()

• Collection$print()

• Collection$next_page()

• Collection$prev_page()

• Collection$all()

• Collection$clone()

Method new(): Create a new Collection object.

Usage:
Collection$new(
href = NA,
items = NA,
links = NA,
total = NA,
response = NA,
auth = NA

)

Arguments:
href API request URL.
items Items returned in API response.
links List of links (hrefs) for next and/or previous page resources.
total Total number of items available on the server.
response Raw API response.
auth Seven Bridges Authentication object.

Method print(): Print method for Collection class.

Usage:
Collection$print(n = 10)

Arguments:
n Number of items to print in console.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Collection 43

Print collection object
collection_object$print()

}

Method next_page(): Returns the next page of results.

Usage:
Collection$next_page(...)

Arguments:
... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get next page of collection results
collection_object$next_page()

}

Method prev_page(): Returns the previous page of results.

Usage:
Collection$prev_page(...)

Arguments:
... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,

etc.

Examples:
\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

44 Collection

Get previous page of collection results
collection_object$prev_page()

}

Method all(): Fetches all available items by iterating through all pages. Please be aware of the
API rate limit for your request.

Usage:
Collection$all(...)

Arguments:

... Other arguments that can be passed to core api() function like ’advanced_access’, ’fields’,
etc.

Examples:

\dontrun{
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get all results of collection
collection_object$all()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Collection$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Collection$print`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,

Collection 45

total = x$total,
auth = auth,
response = attr(x, "response")

)

Print collection object
collection_object$print()

End(Not run)

--
Method `Collection$next_page`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get next page of collection results
collection_object$next_page()

End(Not run)

--
Method `Collection$prev_page`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get previous page of collection results
collection_object$prev_page()

End(Not run)

46 Division

--
Method `Collection$all`
--

Not run:
x is API response when collection object is requested
collection_object <- Collection$new(

href = x$href,
items = x$items,
links = x$links,
total = x$total,
auth = auth,
response = attr(x, "response")

)

Get all results of collection
collection_object$all()

End(Not run)

Division R6 Class representing a Division

Description

R6 Class representing a central resource for managing divisions.

Super class

sevenbridges2::Item -> Division

Public fields

URL List of URL endpoints for this resource.

id The ID of the division.

name Division’s name.

Methods

Public methods:
• Division$new()

• Division$print()

• Division$reload()

• Division$list_teams()

• Division$list_members()

• Division$remove_member()

Division 47

• Division$clone()

Method new(): Create a new Division object.

Usage:
Division$new(res = NA, ...)

Arguments:
res Response containing the Division object information.
... Other response arguments.

Method print(): Print method for Division class.

Usage:
Division$print()

Examples:
\dontrun{
division_object <- Division$new(
res = x,

href = x$href,
auth = auth,
response = attr(x, "response")
)
division_object$print()

}

Method reload(): Reload Division object information.

Usage:
Division$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

@importFrom rlang inform

Returns: Division object.

Examples:
\dontrun{
division_object <- Division$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
division_object$reload()

}

Method list_teams(): This call retrieves a list of all teams in a division that you are a member
of. Each team’s ID and name will be returned.

Usage:

48 Division

Division$list_teams(list_all = FALSE, ...)

Arguments:

list_all Boolean. Set this field to TRUE if you want to list all teams within the division
(regardless of whether you are a member of a team or not). Default value is FALSE.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: A Collection of Team objects.

Examples:

\dontrun{
Get details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Retrieve a list of division teams you are a member of
division_obj$list_teams()

Retrieve a list of all teams within the division regardless of
whether you are a member of a team or not
division_obj$list_teams(list_all = TRUE)

}

Method list_members(): This call retrieves a list of all members of a division. In addition,
you can list members with a specific role, e.g. all administrators within a division.

Usage:
Division$list_members(
role = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

role Filter members by role. Supported roles are ADMIN, MEMBER, and EXTERNAL_COLLABORATOR.
If NULL (default), members of all roles will be retrieved.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like other query parameters or
’fields’, etc.

Returns: A Collection of User objects.

Examples:

\dontrun{
Get details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Division 49

Retrieve a list of all division members
division_obj$list_members()

Or filter members by role. The following roles are supported:
"MEMBER", "ADMIN", and "EXTERNAL_COLLABORATOR"
division_obj$list_members(role = "ADMIN")

}

Method remove_member(): Removes a specified user from a division. This action revokes the
user’s membership in the division but does not delete their Platform account. Note that only users
with the ADMIN role in the division can perform this action.

Usage:
Division$remove_member(user)

Arguments:

user The Seven Bridges Platform username of the user to be removed, specified in the format
division-name/username, or an object of class User that contains the username.

Examples:

\dontrun{
Retrieve details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Remove a member using their username
division_obj$remove_member(user = "division-name/username")

Remove a member using a User object
members <- division_obj$list_members(role = "MEMBER")
member_to_remove <- members$items[[1]]
division_obj$remove_member(user = member_to_remove)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Division$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Division$print`
--

Not run:
division_object <- Division$new(
res = x,

50 Division

href = x$href,
auth = auth,
response = attr(x, "response")
)
division_object$print()

End(Not run)

--
Method `Division$reload`
--

Not run:
division_object <- Division$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
division_object$reload()

End(Not run)

--
Method `Division$list_teams`
--

Not run:
Get details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Retrieve a list of division teams you are a member of
division_obj$list_teams()

Retrieve a list of all teams within the division regardless of
whether you are a member of a team or not
division_obj$list_teams(list_all = TRUE)

End(Not run)

--
Method `Division$list_members`
--

Not run:
Get details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Retrieve a list of all division members
division_obj$list_members()

Divisions 51

Or filter members by role. The following roles are supported:
"MEMBER", "ADMIN", and "EXTERNAL_COLLABORATOR"
division_obj$list_members(role = "ADMIN")

End(Not run)

--
Method `Division$remove_member`
--

Not run:
Retrieve details of a specific division
division_obj <- a$divisions$get(id = "division-id")

Remove a member using their username
division_obj$remove_member(user = "division-name/username")

Remove a member using a User object
members <- division_obj$list_members(role = "MEMBER")
member_to_remove <- members$items[[1]]
division_obj$remove_member(user = member_to_remove)

End(Not run)

Divisions R6 Class representing divisions endpoints.

Description

R6 Class representing Divisions resource.

Super class

sevenbridges2::Resource -> Divisions

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Divisions$new()

• Divisions$query()

• Divisions$get()

• Divisions$clone()

Method new(): Create new Divisions resource object.

52 Divisions

Usage:
Divisions$new(...)

Arguments:

... Other response arguments.

Method query(): This call retrieves a list of all divisions you are a member of. Each division’s
ID, name and URL on platform will be returned.

Usage:
Divisions$query()

Returns: A Collection of Division objects.

Examples:

\dontrun{
Retrieve a list of all divisions you are a member of
a$Divisions$query()

}

Method get(): This call returns the details of a specified division.

Usage:
Divisions$get(id, ...)

Arguments:

id The ID of the division you are querying. The function also accepts a Division object and
extracts the ID.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Division object.

Examples:

\dontrun{
Retrieve details of a specified division
a$Divisions$get(id = "division-id")

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Divisions$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Divisions$query`
--

Not run:
Retrieve a list of all divisions you are a member of

Export 53

a$Divisions$query()

End(Not run)

--
Method `Divisions$get`
--

Not run:
Retrieve details of a specified division
a$Divisions$get(id = "division-id")

End(Not run)

Export R6 Class representing an Export

Description

R6 Class representing a resource for managing volume export jobs.

Super class

sevenbridges2::Item -> Export

Public fields

URL List of URL endpoints for this resource.

id Export job string identifier.

state The state of the export job. Possible values are:

• PENDING: the export is queued;
• RUNNING: the export is running;
• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.

source List containing the source file ID that is being exported to the volume.

destination List containing the destination volume ID and location (file name) on the volume
where the file is being exported.

overwrite Indicates whether the exported file name was overwritten if another file with the same
name already existed on the volume.

started_on Time when the export job started.

finished_on Time when the export job ended.

properties List of volume properties set.

error In case of error in the export job, standard API error is returned here.

result File object that was exported.

54 Export

Methods

Public methods:
• Export$new()

• Export$print()

• Export$reload()

• Export$clone()

Method new(): Create a new Export object.

Usage:
Export$new(res = NA, ...)

Arguments:

res Response containing Export job information.
... Other response arguments.

Method print(): Print method for Export class.

Usage:
Export$print()

Examples:

\dontrun{
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print export object
export_object$print()

}

Method reload(): Refresh the Export object with updated information.

Usage:
Export$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
x is API response when export is requested
export_object <- Export$new(

res = x,

Export 55

href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload export object
export_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Export$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `Export$print`
--

Not run:
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print export object
export_object$print()

End(Not run)

--
Method `Export$reload`
--

Not run:
x is API response when export is requested
export_object <- Export$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload export object

56 Exports

export_object$reload()

End(Not run)

Exports R6 Class representing storage exports endpoints

Description

R6 Class representing storage exports resource endpoints.

Super class

sevenbridges2::Resource -> Exports

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Exports$new()

• Exports$query()

• Exports$get()

• Exports$submit_export()

• Exports$delete()

• Exports$bulk_get()

• Exports$bulk_submit_export()

• Exports$clone()

Method new(): Create a new Exports object.

Usage:
Exports$new(...)

Arguments:

... Other response arguments.

Method query(): This call lists export jobs initiated by a particular user. Note that when you
export a file from a project on the Platform into a volume, you write to your cloud storage bucket.

Usage:

Exports 57

Exports$query(
volume = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

volume Volume id or Volume object. List all exports into this particular volume. Optional.
state The state of the export job. Possible values are:

• PENDING: the export is queued;
• RUNNING: the export is running;
• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.
Example:

state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Export objects.

Examples:

\dontrun{
exports_object <- Exports$new(
auth = auth

)

List all your running or failed export jobs on the volume
exports_object$query(volume = volume, state = c("RUNNING", "FAILED"))

}

Method get(): This call will return the details of an export job.

Usage:
Exports$get(id, ...)

Arguments:

id The export job identifier (id).
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

58 Exports

\dontrun{
exports_object <- Exports$new(
auth = auth

)

Get export job by ID
exports_object$get(id = id)

}

Method submit_export(): This call lets you queue a job to export a file from a project on the
Platform into a volume. The file selected for export must not be a public file or an alias. Aliases
are objects stored in your cloud storage bucket which have been made available on the Platform.
The volume you are exporting to must be configured for read-write access. To do this, set the
access_mode parameter to RW when creating or modifying a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project file will become an alias to the newly exported object on the volume. The
source file will be deleted from the Platform and, if no more copies of this file exist, it will no
longer count towards your total storage price on the Platform.
In summary, once you export a file from the Platform to a volume, it is no longer part of the
storage on the Platform and cannot be exported again.

Read more about this operation in our documentation here.

If you want to export multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more). Bulk operations will be implemented in next releases.

Usage:
Exports$submit_export(
source_file,
destination_volume,
destination_location,
overwrite = FALSE,
copy_only = FALSE,
properties = NULL,
...

)

Arguments:

source_file File id or File object you want to export to the volume.
destination_volume Volume id or Volume object you want to export files into.
destination_location Volume-specific location to which the file will be exported. This lo-

cation should be recognizable to the underlying cloud service as a valid key or path to a new
file. Please note that if this volume has been configured with a prefix parameter, the value
of prefix will be prepended to location before attempting to create the file on the volume.
If you would like to export the file into a folder on the volume, please add the folder name
as a prefix before the file name in the form <folder-name>/<file-name>.

https://docs.sevenbridges.com/reference/start-an-export-job-v2
https://docs.sevenbridges.com/docs/api-rate-limit

Exports 59

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination.

copy_only If TRUE, file will be copied to a volume but source file will remain on the Platform.
properties Named list of additional volume properties, like:

• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-
ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_Id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
exports_object <- Exports$new(
auth = auth

)

Submit export job
exp_job1 <- exports_object$submit_export(

source_file = test_file,
destination_volume = vol1,
destination_location = "new_volume_file.txt"

)
}

Method delete(): Export jobs cannot be deleted.

Usage:
Exports$delete()

Method bulk_get(): This call returns the details of a bulk export job. When you export files
from a project on the Platform into a volume, you write to your cloud storage bucket. This call
obtains the details of that job.

Usage:
Exports$bulk_get(exports)

Arguments:

exports The list of the export job IDs as returned by the call to start a bulk export job or list of
Export objects.

Returns: Collection with list of Export objects.

Examples:

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

60 Exports

\dontrun{
exports_object <- Exports$new(

auth = auth,
)

List export jobs
exports_object$bulk_get(
exports = list("export-job-id-1", "export-job-id-2")
)

}

Method bulk_submit_export(): Bulk export files from your project on the Seven Bridges
Platform into your volume. One call can contain up to 100 items. Files selected for export must
not be public files or aliases. Aliases are objects stored in your cloud storage bucket which have
been made available on the Platform. The volume you are exporting to must be configured for
read-write access. To do this, set the access_mode parameter to RW when creating or modifying
a volume.
Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project files will become aliases to the newly exported objects on the volume. Source
files will be deleted from the Platform and, if no more copies of the files exist, they will no longer
count towards your total storage price on the Platform. In summary, once you export files from
the Platform to a volume, they are no longer part of the storage on the Platform and cannot be
exported again.
Learn more about using the Volumes API for Amazon S3 and for Google Cloud Storage.

Usage:

Exports$bulk_submit_export(items, copy_only = FALSE)

Arguments:

items Nested list of elements containing information about each file to be exported. For each
element, users must provide:
• source_file - File ID or File object you want to export to the volume,
• destination_volume - Volume ID or Volume object you want to export files into.
• destination_location - Volume-specific location to which the file will be exported.

This location should be recognizable to the underlying cloud service as a valid key or
path to a new file. Please note that if this volume has been configured with a prefix
parameter, the value of prefix will be prepended to the location before attempting to
create the file on the volume.
If you would like to export the file into a folder on the volume, please add folder name as
a prefix before the file name in the <folder-name>/<file-name> form.

• overwrite - Set to TRUE if you want to overwrite the item with the same name if it
already exists at the destination.

• properties - Named list of additional volume properties, like:
– sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-

ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryp-
tion). Default: AES256.

https://docs.sevenbridges.com/docs/aws-cloud-storage-tutorial
https://docs.sevenbridges.com/docs/google-cloud-storage-tutorial

Exports 61

– sse_aws_kms_key_Id: Applies to type: s3. If AWS KMS encryption is used, this
should be set to the required KMS key. If not set and aws:kms is set as sse_algorithm,
default KMS key is used.

– aws_canned_acl: S3 canned ACL to apply on the object during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default:
null.

Example of the list:
items <- list(

list(
source_file = "test_file-id",
destination_volume = "volume-id",
destination_location = "new_volume_file.txt"

),
list(
source_file = "test_file_obj",
destination_volume = "test_volume_obj",
destination_location = "/volume_folder/exported_file.txt",
overwrite = TRUE

),
list(
source_file = "project_file_3_id",
destination_volume = "volume-id",
destination_location = "project_file_3.txt",
properties = list(
sse_algorithm = "AES256"

)
)

)

Read more on how to export files from your project to a volume or a volume folder.
Utility function prepare_items_for_bulk_export can help you prepare the items pa-
rameter for the bulk_submit_export() method.

copy_only If set to true, the files will be copied to a volume but the source files will remain on
the Platform.

Returns: Collection with list of Export objects.

Examples:
\dontrun{
exports_object <- Exports$new(

auth = auth
)

Submit new bulk export into a volume
exports_object$bulk_submit_export(items = list(
list(
source_file = "test_file-id",
destination_volume = "volume-id",
destination_location = "new_volume_file.txt"

),

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl
https://docs.sevenbridges.com/reference/start-a-bulk-export-job

62 Exports

list(
source_file = test_file_obj,
destination_volume = test_volume_obj,
destination_location = "/volume_folder/exported_file.txt",
overwrite = TRUE

),
list(
source_file = "project_file_3_id",
destination_volume = "volume-id",
destination_location = "project_file_3.txt",
properties = list(
sse_algorithm = "AES256"
)

)
), copy_only = TRUE
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Exports$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Exports$query`
--

Not run:
exports_object <- Exports$new(

auth = auth
)

List all your running or failed export jobs on the volume
exports_object$query(volume = volume, state = c("RUNNING", "FAILED"))

End(Not run)

--
Method `Exports$get`
--

Not run:
exports_object <- Exports$new(

auth = auth
)

Exports 63

Get export job by ID
exports_object$get(id = id)

End(Not run)

--
Method `Exports$submit_export`
--

Not run:
exports_object <- Exports$new(
auth = auth

)

Submit export job
exp_job1 <- exports_object$submit_export(

source_file = test_file,
destination_volume = vol1,
destination_location = "new_volume_file.txt"

)

End(Not run)

--
Method `Exports$bulk_get`
--

Not run:
exports_object <- Exports$new(

auth = auth,
)

List export jobs
exports_object$bulk_get(
exports = list("export-job-id-1", "export-job-id-2")
)

End(Not run)

--
Method `Exports$bulk_submit_export`
--

Not run:
exports_object <- Exports$new(

auth = auth
)

Submit new bulk export into a volume

64 File

exports_object$bulk_submit_export(items = list(
list(

source_file = "test_file-id",
destination_volume = "volume-id",
destination_location = "new_volume_file.txt"

),
list(

source_file = test_file_obj,
destination_volume = test_volume_obj,
destination_location = "/volume_folder/exported_file.txt",
overwrite = TRUE

),
list(

source_file = "project_file_3_id",
destination_volume = "volume-id",
destination_location = "project_file_3.txt",
properties = list(
sse_algorithm = "AES256"

)
)
), copy_only = TRUE
)

End(Not run)

File R6 Class representing a File

Description

R6 Class representing a resource for managing files and folders.

Super class

sevenbridges2::Item -> File

Public fields

URL List of URL endpoints for this resource.

id File ID.

name File name.

size File size.

project Project ID if any, where file/folder is located.

created_on Date file/folder was created on.

modified_on Date file/folder was modified on.

storage File/folder’s storage type.

File 65

origin Task ID if file/folder is produced by some task execution.

tags List of tags associated with the file.

metadata List of metadata associated with the file.

url File download URL.

parent Parent folder ID.

type This can be of type file or folder.

secondary_files Secondary files linked to the file, if they exist.

Methods

Public methods:

• File$new()

• File$print()

• File$detailed_print()

• File$reload()

• File$update()

• File$add_tag()

• File$copy_to()

• File$get_download_url()

• File$get_metadata()

• File$set_metadata()

• File$move_to_folder()

• File$list_contents()

• File$delete()

• File$download()

• File$submit_export()

• File$clone()

Method new(): Create a new File object.

Usage:
File$new(res = NA, ...)

Arguments:

res Response containing File object information.
... Other response arguments.

Method print(): Print method for File class.

Usage:
File$print()

Examples:

66 File

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print file object
file_object$print()

}

Method detailed_print(): Detailed print method for File class.

Usage:
File$detailed_print()

Details: The call returns the file’s name, its tags, and all of its metadata. Apart from regular
file fields there are some additional fields:

• storage field denotes the type of storage for the file which can be either PLATFORM or
VOLUME depending on where the file is stored.

• origin field denotes the task that produced the file, if it was created by a task on the Seven
Bridges Platform.

• metadata field lists the metadata fields and values for the file.
• tags field lists the tags for the file. Learn more about tagging your files on the Platform.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Detailed print of file object
file_object$detailed_print()

}

Method reload(): Reload File object information.

Usage:
File$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: File object.

https://docs.sevenbridges.com/docs/tag-your-files

File 67

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload file object
file_object$reload()

}

Method update(): Updates the name, the full set of metadata, and tags for a specified file.

Usage:
File$update(name = NULL, metadata = NULL, tags = NULL, ...)

Arguments:
name The new name of the file.
metadata The metadata fields and their values that you want to update. This is a named list of

key-value pairs. The keys and values are strings.
tags The tags you want to update, represented as unnamed list of values to add as tags.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Returns: Updated File object.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Update file object
file_object$update(name = "new_name")

}

Method add_tag(): This method allows you to tag files on the Platform. You can tag your files
on the Platform with keywords to make it easier to identify and organize files you’ve imported
from public datasets or copied between projects.
More details on how to use this call can be found here.

Usage:

https://docs.sevenbridges.com/reference/add-tags-to-a-file

68 File

File$add_tag(tags, overwrite = FALSE, ...)

Arguments:
tags The tags you want to update, represented as unnamed list of values to add as tags.
overwrite Set to TRUE if you want to overwrite existing tags. Default: FALSE.
... Additional parameters that can be passed to the method.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add new tag to file object
file_object$add_tag(tags = c("new_tag"))

}

Method copy_to(): This call copies the specified file to a new project. Files retain their meta-
data when copied, but may be assigned new names in their target project. To make this call, you
should have copy permission within the project you are copying from.
Note: If you want to copy multiple files, the recommended way is to do it in bulk considering the
API rate limit (learn more). You can do that using Auth$copy_files() operation.

Usage:
File$copy_to(project, name = NULL, ...)

Arguments:
project The ID of the project or a Project object where you want to copy the file to.
name The new name the file will have in the target project. If its name will not change, omit

this key.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Copied File object.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Copy file object to project
file_object$copy_to(project = project)

https://docs.sevenbridges.com/docs/set-permissions
https://docs.sevenbridges.com/docs/api-rate-limit

File 69

}

Method get_download_url(): This method returns a URL that you can use to download the
specified file.

Usage:
File$get_download_url(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get download url for file object
file_object$get_download_url()

}

Method get_metadata(): This call returns the metadata values for the specified file.

Usage:
File$get_metadata(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get metadata for file object
file_object$get_metadata()

}

Method set_metadata(): This call changes the metadata values for the specified file.
More details about how to modify metadata, you can find in the API documentation.

https://docs.sevenbridges.com/reference/modify-a-files-metadata

70 File

Usage:
File$set_metadata(metadata_fields, overwrite = FALSE, ...)

Arguments:

metadata_fields Enter a list of key-value pairs of metadata fields and metadata values.
overwrite Set to TRUE if you want to overwrite existing tags. Default: FALSE.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Set metadata for file object
file_object$set_metadata(metadata_fields = list("field_1" = "value_1"))

}

Method move_to_folder(): This call moves a file from one folder to another. Moving of files
is only allowed within the same project.

Usage:
File$move_to_folder(parent, name = NULL)

Arguments:

parent The ID of target folder or a File object which must be of type FOLDER.
name Specify a new name for a file in case you want to rename it. If you want to use the same

name, omit this key.

Returns: Moved File object.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Move file object to a project
file_object$move_to_folder(parent = "parent-folder-id")

}

File 71

Method list_contents(): List folder contents.
Usage:
File$list_contents(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.
Returns: Collection of File objects.
Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List folder's content
file_object$list_contents()

}

Method delete(): Delete method for File objects.
Usage:
File$delete()

Examples:
\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete file object
file_object$delete()

}

72 File

Method download(): Download method for File objects. It allows downloading a platform file
to your local computer. To specify the destination for your download, you should provide the path
to the destination directory as directory_path parameter.

Usage:
File$download(
directory_path,
filename = self$name,
method = "curl",
retry_count = getOption("sevenbridges2")$default_retry_count,
retry_timeout = getOption("sevenbridges2")$default_retry_timeout

)

Arguments:

directory_path Path to the destination directory of a new file.
filename Full name for the new file, including its extension. By default, the name field of File

object will be used.
method Method to be used for downloading files. By default, this parameter is set to curl.
retry_count Number of retries if error occurs during download.
retry_timeout Number of seconds between two retries.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Download file object
file_object$download(directory_path = ".")

}

Method submit_export(): This call lets you queue a job to export this file from a project on the
Platform into a volume. The file selected for export must not be a public file or an alias. Aliases
are objects stored in your cloud storage bucket which have been made available on the Platform.
The volume you are exporting to must be configured for read-write access. To do this, set the
access_mode parameter to RW when creating or modifying a volume.

Essentially, the call writes to your cloud storage bucket via the volume. If this call is successful,
the original project file will become an alias to the newly exported object on the volume. The
source file will be deleted from the Platform and, if no more copies of this file exist, it will no
longer count towards your total storage price on the Platform.
In summary, once you export a file from the Platform to a volume, it is no longer part of the
storage on the Platform and cannot be exported again.

File 73

Read more about this operation in our documentation here.
If you want to export multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more) (bulk operations will be implemented in next releases).

Usage:
File$submit_export(
destination_volume,
destination_location,
overwrite = FALSE,
copy_only = FALSE,
properties = NULL,
...

)

Arguments:

destination_volume Volume id or Volume object you want to export files into. Required.
destination_location Volume-specific location to which the file will be exported. This lo-

cation should be recognizable to the underlying cloud service as a valid key or path to a new
file. Please note that if this volume has been configured with a prefix parameter, the value
of prefix will be prepended to location before attempting to create the file on the volume.
If you would like to export the file into some folder on the volume, please add folder name
as prefix before file name in form <folder-name>/<file-name>.

overwrite Set to TRUE if you want to overwrite the item that already exists at the destination.
Default: FALSE.

copy_only If TRUE, file will be copied to a volume but source file will remain on the Platform.
properties Named list of additional volume properties, like:

• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-
ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_Id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Export object.

Examples:

\dontrun{
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Export file object to a volume

https://docs.sevenbridges.com/reference/start-an-export-job-v2
https://docs.sevenbridges.com/docs/api-rate-limit
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

74 File

file_object$submit_export(
destination_volume = volume,
destination_location = location

)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
File$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `File$print`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print file object
file_object$print()

End(Not run)

--
Method `File$detailed_print`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Detailed print of file object
file_object$detailed_print()

End(Not run)

File 75

--
Method `File$reload`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload file object
file_object$reload()

End(Not run)

--
Method `File$update`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Update file object
file_object$update(name = "new_name")

End(Not run)

--
Method `File$add_tag`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

76 File

Add new tag to file object
file_object$add_tag(tags = c("new_tag"))

End(Not run)

--
Method `File$copy_to`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Copy file object to project
file_object$copy_to(project = project)

End(Not run)

--
Method `File$get_download_url`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get download url for file object
file_object$get_download_url()

End(Not run)

--
Method `File$get_metadata`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,

File 77

auth = auth,
response = attr(x, "response")
)

Get metadata for file object
file_object$get_metadata()

End(Not run)

--
Method `File$set_metadata`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Set metadata for file object
file_object$set_metadata(metadata_fields = list("field_1" = "value_1"))

End(Not run)

--
Method `File$move_to_folder`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Move file object to a project
file_object$move_to_folder(parent = "parent-folder-id")

End(Not run)

--
Method `File$list_contents`
--

Not run:

78 File

x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List folder's content
file_object$list_contents()

End(Not run)

--
Method `File$delete`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete file object
file_object$delete()

End(Not run)

--
Method `File$download`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Download file object
file_object$download(directory_path = ".")

End(Not run)

--

Files 79

Method `File$submit_export`
--

Not run:
x is API response when file is requested
file_object <- File$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Export file object to a volume
file_object$submit_export(

destination_volume = volume,
destination_location = location

)

End(Not run)

Files R6 Class representing files endpoints.

Description

R6 Class representing Files resource.

Super class

sevenbridges2::Resource -> Files

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Files$new()

• Files$query()

• Files$get()

• Files$delete()

• Files$copy()

• Files$create_folder()

• Files$bulk_delete()

• Files$bulk_get()

80 Files

• Files$bulk_update()

• Files$bulk_edit()

• Files$async_bulk_copy()

• Files$async_bulk_delete()

• Files$async_bulk_move()

• Files$async_get_copy_job()

• Files$async_get_delete_job()

• Files$async_get_move_job()

• Files$async_list_file_jobs()

• Files$clone()

Method new(): Create new Files resource object.

Usage:
Files$new(...)

Arguments:

... Other response arguments.

Method query(): This call returns a list of files and subdirectories in a specified project or
directory within a project, with specified properties that you can access. The project or directory
whose contents you want to list is specified as a query parameter in the call. Further properties to
filter by can also be specified as query parameters.

Note that this call lists both files and subdirectories in the specified project or directory within
a project, but not the contents of the subdirectories.
To list the contents of a subdirectory, make a new call and specify the subdirectory ID as the
parent parameter.
For more details, see our API documentation.

Usage:
Files$query(
project = NULL,
parent = NULL,
name = NULL,
metadata = NULL,
origin = NULL,
tag = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

project Project identifier (ID) as string or a Project object. Project should not be used together
with parent. If parent is used, the call will list the content of the specified folder, within the
project to which the folder belongs. If project is used, the call will list the content at the
root of the project’s files.

https://docs.sevenbridges.com/reference/list-files-primary-method

Files 81

parent The parent folder identifier as string or a File object which must be of type FOLDER.
Should not be used together with project. If parent is used, the call will list the content of
the specified folder, within the project to which the folder belongs. If project is used, the
call will list the content at the root of the project’s files.

name Name of the file. List files with this name. Note that the name must be an exact complete
string for the results to match. Multiple names can be represented as a vector.

metadata List file with this metadata field values. List only files that have the specified value
in metadata field. Different metadata fields are represented as a named list. You can also
define multiple instances of the same metadata field.

origin Task object. List only files produced by task.
tag Filters the files based on the specified tag(s). Each tag must be an exact, complete match,

for the results to match. Tags may include spaces. Multiple tags should be provided as a
vector of strings. The method will return files that have any of the specified tags.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function as ’fields’, etc.

Returns: Collection of File objects.

Examples:
\dontrun{
files_object <- Files$new(auth = auth)

Query files in a project
files_object$query(project = project)

}

Method get(): This call returns a single File object with its details. The call returns the file’s
name, its tags, and all of its metadata. Files are specified by their IDs, which you can obtain by
making the API call to list all files in a project.

Usage:
Files$get(id, ...)

Arguments:
id The file ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Returns: File object.

Examples:
\dontrun{
files_object <- Files$new(auth = auth)

Get file using id
files_object$get(id = id)
}

82 Files

Method delete(): This call removes a file from the Seven Bridges Platform. Files are specified
by their IDs, which you can obtain by using Files$query() to list files or by getting a single file
using Files$get().

Usage:
Files$delete(file, ...)

Arguments:
file File object or file ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:
\dontrun{
files_object <- Files$new(auth = auth)

Delete a file
files_object$delete(file = file)

}

Method copy(): Copy file/files to the specified project. This call allows you to copy files
between projects. Unlike the call to copy a file between projects, this call lets you batch the copy
operation and copy a list of files at a time.
More information can be found here here.

Usage:
Files$copy(files, destination_project)

Arguments:
files The list of files’ IDs or list of File object to copy.
destination_project Project object or project ID. where you want to copy files into.

Examples:
\dontrun{
files_object <- Files$new(auth = auth)

Copy files to a project
files_object$copy(

file = file,
destination_project = project
)

}

Method create_folder(): A method for creating a new folder. It allows you to create a new
folder on the Platform within the root folder of a specified project or the provided parent folder.
Remember that you should provide either the destination project (as the project parameter) or
the destination folder (as the parent parameter), not both.
More information you may find here.

Usage:
Files$create_folder(name, parent = NULL, project = NULL)

https://docs.sevenbridges.com/reference/copy-files-between-projects
https://docs.sevenbridges.com/reference/create-a-folder

Files 83

Arguments:
name The name of the folder you are about to create.
parent The ID of the parent destination folder or a File object which must be of type FOLDER.
project The ID of the destination project, or a Project object.

Examples:
\dontrun{
files_object <- Files$new(auth = auth)

Create folder in a project
files_object$create_folder(

name = name,
project = project
)

}

Method bulk_delete(): This method facilitates bulk file deletion. It accepts either a list of
File objects or a list containing files’ IDs.

Usage:
Files$bulk_delete(files)

Arguments:
files Either a list of File objects or a list of strings (IDs) representing the files you intend to

delete.

Returns: None. The function only displays the IDs of the deleted files in the console.

Examples:
\dontrun{
Delete two files by providing their IDs
a$files$bulk_delete(files = list("file_1_ID", "file_2_ID"))

}

\dontrun{
Delete two files by providing a list of File objects
a$files$bulk_delete(files = list(File_Object_1, File_Object_2))

}

Method bulk_get(): This call returns the details of multiple specified files, including file names
and file metadata. The maximum number of files you can retrieve the details for per call is 100.

Usage:
Files$bulk_get(files)

Arguments:
files A list of File objects or list of strings (IDs) of the files you are querying for details.

Returns: Collection (list of File objects).

Examples:

84 Files

\dontrun{
Get details of multiple files
a$files$bulk_get(

files = list("file_1_ID", "file_2_ID")
)

}

Method bulk_update(): A method that sets new information for specified files, replacing all
existing information and erasing omitted parameters.

Usage:
Files$bulk_update(files)

Arguments:

files List of File objects.

Details: For each of the specified files, the call sets a new name, new tags, and metadata.
When editing fields in the File objects you wish to update, keep the following in mind:

• The name field should be a string representing the new name of the file.
• The metadata field should be a named list of key-value pairs. The keys and values should

be strings.
• The tags field should be an unnamed list of values.

The maximum number of files you can update the details for per call is 100.

Returns: Collection (list of File objects).

Examples:

\dontrun{
Update details of multiple files
a$files$bulk_update(

files = list(File_Object_1, File_Object_2)
)

}

Method bulk_edit(): This method modifies the existing information for specified files or adds
new information while preserving omitted parameters.

Usage:
Files$bulk_edit(files)

Arguments:

files List of File objects.

Details: For each of the specified files, the call edits its name, tags, and metadata.
When editing fields in the File objects you wish to update, keep the following in mind:

• The name field should be a string representing the new name of the file.
• The metadata field should be a named list of key-value pairs. The keys and values should

be strings.
• The tags field should be an unnamed list of values.

Files 85

The maximum number of files you can update the details for per call is 100.

Returns: Collection (list of File objects).

Examples:
\dontrun{
Edit details of multiple files
a$files$bulk_edit(

files = list(File_Object_1, File_Object_2)
)

}

Method async_bulk_copy(): This call lets you perform a bulk copy of files and folders. Any
underlying folder structure will be preserved. You can copy:

• to a folder within the same project,
• to another project,
• to a folder in another project.

Usage:
Files$async_bulk_copy(items)

Arguments:
items Nested list of elements containing information about each file/folder to be copied. For

each element, you must provide:
• file - The ID of the file or folder you are copying. Copying the project root folder is not

allowed. Use the API call for listing all files to obtain the ID.
• parent - The ID of the folder you are copying files to. It should not be used together with
project. If project is used, the items will be imported to the root of the project files. If
parent is used, the import will take place into the specified folder, within the project to
which the folder belongs.

• project - The project you are copying the file to. It should not be used together with
parent. If parent is used, the import will take place into the specified folder, within the
project to which the folder belongs. If project is used, the items will be imported to the
root of the project files.

• name - Enter the new name for the file if you want to rename it in the destination folder.
Example of the list:
items <- list(

list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(
file = '<file-id-2>',
project = '<project-id-1>',
name = 'copied_file.txt'

),
list(
file = '<file-id-3>',

86 Files

parent = '<parent-id-2>',
name = 'copied_file2.txt'

)
)

Read more on how to perform async copy action on multiple files.

Returns: AsyncJob object.

Examples:
\dontrun{
Copy multiple files
a$files$async_bulk_copy(
items = list(

list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(
file = '<file-id-2>',
project = '<project-id-1>',
name = 'copied_file.txt'

),
list(
file = '<file-id-3>',
parent = '<parent-id-2>',
name = 'copied_file2.txt'

)
)

)
}

Method async_bulk_delete(): This call lets you perform an asynchronous bulk deletion of
files or folders. Deleting folders which aren’t empty is allowed.

Usage:
Files$async_bulk_delete(items)

Arguments:
items List of File objects (both file or folder type) or list of IDs of files/folders you want to

delete. Read more on how to perform async delete action on multiple files.

Returns: AsyncJob object.

Examples:
\dontrun{
Delete multiple files
a$files$async_bulk_delete(
items = list(file_obj1, file_obj2, "<folder-id-string>", "<file-id>")

)
}

https://docs.sevenbridges.com/reference/copy-multiple-files
https://docs.sevenbridges.com/reference/delete-multiple-files-and-folders

Files 87

Method async_bulk_move(): This call lets you perform a bulk move operation of files and
folders. You can move:

• to a root project folder,
• to a subfolder within the same project or a different project.

Usage:
Files$async_bulk_move(items)

Arguments:

items Nested list of elements containing information about each file/folder to be moved. For
each element, you must provide:

• file - The ID of the file or folder you are moving. Use the API call for listing all files or
folders to obtain the ID.

• parent - The ID of the folder you are moving the files to, which should not be used along
with project. If project is used, the items will be imported to the root of the project
files. If parent is used, the import will take place into the specified folder, within the
project to which the folder belongs.

• project - The project you are moving the files to. It should not be used together with
parent. If parent is used, the import will take place into the specified folder, within the
project to which the folder belongs. If project is used, the items will be imported to the
root of the project files.

• name - Enter the new name for the file or folder if you want to rename at the destination.

Example of the list:

items <- list(
list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(
file = '<file-id-2>',
project = '<project-id-1>',
name = 'moved_file.txt'

),
list(
file = '<file-id-3>',
parent = '<parent-id-2>',
name = 'moved_file2.txt'

)
)

Read more on how to perform async move action on multiple files.

Details: Rules for moving files and folders:
• The file ID is preserved after the move.
• The folder ID is changed after the move.
• The destination must be an existing folder.
• If the target folder contains a folder with the same name, the contents of both folders will

be merged.

https://docs.sevenbridges.com/reference/move-multiple-files-or-folders

88 Files

• If a file with the same name already exists, the source file will be automatically renamed
(by adding a numeric prefix).

• You need to have WRITE permissions for both source and destination folders.

Returns: AsyncJob object.

Examples:
\dontrun{
Move multiple files
a$files$async_bulk_move(
items = list(

list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(
file = '<file-id-2>',
project = '<project-id-1>',
name = 'moved_file.txt'

),
list(
file = '<file-id-3>',
parent = '<parent-id-2>',
name = 'moved_file2.txt'

)
)

)
}

Method async_get_copy_job(): This call retrieves the details of an asynchronous bulk copy
job. This information will be available for up to a month after the job has been completed.

Usage:
Files$async_get_copy_job(job_id)

Arguments:
job_id The ID of the copy job you are querying. This ID can be found within the API response

for the call for copying files. The function also accepts an AsyncJob object and extracts the
ID.

Returns: AsyncJob object.

Examples:
\dontrun{
Get details of an async copy job
a$files$async_get_copy_job(job_id = "job-id")

}

Method async_get_delete_job(): This call retrieves the details of an asynchronous bulk
deletion job. This information will be available for up to a month after the job has been completed.

Files 89

Usage:
Files$async_get_delete_job(job_id)

Arguments:
job_id The ID of the delete job you are querying. This ID can be found within the API response

for the call for deleting files. The function also accepts an AsyncJob object and extracts the
ID.

Returns: AsyncJob object.

Examples:
\dontrun{
Get details of an async delete job
a$files$async_get_delete_job(job_id = "job-id")

}

Method async_get_move_job(): This call retrieves the details of an asynchronous bulk move
job. This information will be available for up to a month after the job has been completed.

Usage:
Files$async_get_move_job(job_id)

Arguments:
job_id The ID of the move job you are querying. This ID can be found within the API response

for the call for moving files. The function also accepts an AsyncJob object and extracts the
ID.

Returns: An AsyncJob object containing details of the move job.

Examples:
\dontrun{
Get details of an async move job
a$files$async_get_move_job(job_id = "job-id")

}

Method async_list_file_jobs(): This call retrieves the details for all asynchronous bulk
jobs you have started. This information will be available for up to a month after the job has been
completed.

Usage:
Files$async_list_file_jobs(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

90 Files

Returns: A Collection object containing a list of AsyncJob objects.

Examples:

\dontrun{
Get details of the first 5 async jobs
a$files$async_list_file_jobs(limit = 5)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Files$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Files$query`
--

Not run:
files_object <- Files$new(auth = auth)

Query files in a project
files_object$query(project = project)

End(Not run)

--
Method `Files$get`
--

Not run:
files_object <- Files$new(auth = auth)

Get file using id
files_object$get(id = id)

End(Not run)

--
Method `Files$delete`
--

Not run:
files_object <- Files$new(auth = auth)

Delete a file

Files 91

files_object$delete(file = file)

End(Not run)

--
Method `Files$copy`
--

Not run:
files_object <- Files$new(auth = auth)

Copy files to a project
files_object$copy(

file = file,
destination_project = project
)

End(Not run)

--
Method `Files$create_folder`
--

Not run:
files_object <- Files$new(auth = auth)

Create folder in a project
files_object$create_folder(

name = name,
project = project
)

End(Not run)

--
Method `Files$bulk_delete`
--

Not run:
Delete two files by providing their IDs
a$files$bulk_delete(files = list("file_1_ID", "file_2_ID"))

End(Not run)

Not run:
Delete two files by providing a list of File objects
a$files$bulk_delete(files = list(File_Object_1, File_Object_2))

End(Not run)

92 Files

--
Method `Files$bulk_get`
--

Not run:
Get details of multiple files
a$files$bulk_get(

files = list("file_1_ID", "file_2_ID")
)

End(Not run)

--
Method `Files$bulk_update`
--

Not run:
Update details of multiple files
a$files$bulk_update(

files = list(File_Object_1, File_Object_2)
)

End(Not run)

--
Method `Files$bulk_edit`
--

Not run:
Edit details of multiple files
a$files$bulk_edit(

files = list(File_Object_1, File_Object_2)
)

End(Not run)

--
Method `Files$async_bulk_copy`
--

Not run:
Copy multiple files
a$files$async_bulk_copy(
items = list(

list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(

Files 93

file = '<file-id-2>',
project = '<project-id-1>',
name = 'copied_file.txt'

),
list(

file = '<file-id-3>',
parent = '<parent-id-2>',
name = 'copied_file2.txt'

)
)

)

End(Not run)

--
Method `Files$async_bulk_delete`
--

Not run:
Delete multiple files
a$files$async_bulk_delete(
items = list(file_obj1, file_obj2, "<folder-id-string>", "<file-id>")

)

End(Not run)

--
Method `Files$async_bulk_move`
--

Not run:
Move multiple files
a$files$async_bulk_move(
items = list(

list(
file = '<file-id-1>',
parent = '<folder-id>'

),
list(

file = '<file-id-2>',
project = '<project-id-1>',
name = 'moved_file.txt'

),
list(

file = '<file-id-3>',
parent = '<parent-id-2>',
name = 'moved_file2.txt'

)
)

)

94 Import

End(Not run)

--
Method `Files$async_get_copy_job`
--

Not run:
Get details of an async copy job
a$files$async_get_copy_job(job_id = "job-id")

End(Not run)

--
Method `Files$async_get_delete_job`
--

Not run:
Get details of an async delete job
a$files$async_get_delete_job(job_id = "job-id")

End(Not run)

--
Method `Files$async_get_move_job`
--

Not run:
Get details of an async move job
a$files$async_get_move_job(job_id = "job-id")

End(Not run)

--
Method `Files$async_list_file_jobs`
--

Not run:
Get details of the first 5 async jobs
a$files$async_list_file_jobs(limit = 5)

End(Not run)

Import R6 Class representing an Import job

Import 95

Description

R6 Class representing a resource for managing volume import jobs.

Super class

sevenbridges2::Item -> Import

Public fields

URL List of URL endpoints for this resource.

id Import job string identifier.

state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.

overwrite Indicates whether the imported file or folder name was overwritten if another with the
same name already existed.

autorename Indicates whether the imported file or folder name was automatically renamed (by
prefixing its name with an underscore and number) if another with the same name already
existed.

preserve_folder_structure Whether the imported folder structure was preserved or not.

source List containing source volume id and source location of the file/folder is being imported to
the platform.

destination List containing the source volume ID and the source location of the file or folder
being imported to the platform.

started_on Time when the import job started.

finished_on Time when the import job ended.

error In case of error in the import job, standard API error is returned here.

result File object that was imported.

Methods

Public methods:
• Import$new()

• Import$print()

• Import$reload()

• Import$clone()

Method new(): Create a new Import object.

Usage:
Import$new(res = NA, ...)

Arguments:

96 Import

res Response containing Import object information.
... Other response arguments.

Method print(): Print method for Import class.
Usage:
Import$print()

Examples:
\dontrun{
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print import object
import_object$print()

}

Method reload(): Reload Import object information.
Usage:
Import$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.
Returns: Import object.
Examples:
\dontrun{
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload import object
import_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.
Usage:
Import$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Imports 97

Examples

--
Method `Import$print`
--

Not run:
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print import object
import_object$print()

End(Not run)

--
Method `Import$reload`
--

Not run:
x is API response when import is requested
import_object <- Import$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload import object
import_object$reload()

End(Not run)

Imports R6 Class representing storage imports endpoints

Description

R6 Class for managing storage imports resource endpoints.

Super class

sevenbridges2::Resource -> Imports

98 Imports

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Imports$new()

• Imports$query()

• Imports$get()

• Imports$submit_import()

• Imports$delete()

• Imports$bulk_get()

• Imports$bulk_submit_import()

• Imports$clone()

Method new(): Create a new Imports object.

Usage:
Imports$new(...)

Arguments:
... Other response arguments.

Method query(): This call lists import jobs initiated by a particular user. Note that when you
import a file from your volume on your cloud storage provider (Amazon Web Services or Google
Cloud Storage), you are creating an alias on the Platform which points to the file in your cloud
storage bucket. Aliases appear as files on the Platform and can be copied, executed, and modified
as such. They refer back to the respective file on the given volume.

Usage:
Imports$query(
volume = NULL,
project = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
volume Volume id or Volume object. List all imports from this particular volume. Optional.
project Project id or Project object. List all volume imports to this particular project. Optional.
state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example:

Imports 99

state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.
Returns: Collection of Import objects.
Examples:
\dontrun{
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$query()

}

Method get(): This call will return the details of an import job.
Usage:
Imports$get(id, ...)

Arguments:
id The import job identifier (id).
... Other arguments that can be passed to core api() function like ’fields’, etc.
Returns: Import object.
Examples:
\dontrun{
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$get(id = id)

}

Method submit_import(): This call lets you queue a job to import a file or folder from a vol-
ume into a project on the Platform. Essentially, you are importing an item from your cloud storage
provider (Amazon Web Services, Google Cloud Storage, Azure or Ali Cloud) via the volume onto
the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can
be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

If you want to import multiple files, the recommended way is to do it in bulk considering the API
rate limit (learn more). Bulk operations will be implemented in next releases.

https://docs.sevenbridges.com/docs/api-rate-limit

100 Imports

Usage:
Imports$submit_import(
source_volume,
source_location,
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
preserve_folder_structure = NULL,
...

)

Arguments:
source_volume Volume id or Volume object you want to import files or folders from.
source_location File location name or folder prefix name on the volume you would like to

import into some project/folder on the Platform.
destination_project Destination project id or Project object. Not required, but either

destination_project or destination_parent directory must be provided.
destination_parent Folder id or File object (with type = 'FOLDER'). Not required, but either

destination_project or destination_parent directory must be provided.
name The name of the alias to create. This name should be unique to the project.

If the name is already in use in the project, you should use the overwrite query parameter
in this call to force any item with that name to be deleted before the alias is created. If
name is omitted, the alias name will default to the last segment of the complete location
(including the prefix) on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in
file names are all alphanumeric and special characters except forward slash /, while folder
names can contain alphanumeric and special characters _, - and ..

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

preserve_folder_structure Set to TRUE if you want to keep the exact source folder struc-
ture. The default value is TRUE if the item being imported is a folder. Should not be used
if you are importing a file. Bear in mind that if you use preserve_folder_structure =
FALSE, the response will be the parent folder object containing imported files alongside with
other files if they exist.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:
\dontrun{
imports_object <- Imports$new(

Imports 101

auth = auth
)

Submit new import into a project
imports_object$submit_import(
source_location = volume_file_object,
destination_project = test_project_object,
autorename = TRUE
)

}

Method delete(): Import jobs cannot be deleted.

Usage:
Imports$delete()

Method bulk_get(): This call returns the details of a bulk import job. Note that when you
import files from your volume on a cloud storage provider (Amazon Web Services or Google
Cloud Storage), you create an alias on the Platform which points to the files in your cloud storage
bucket. Aliases appear as files on the Platform and can be copied, executed, and modified.

Usage:
Imports$bulk_get(imports)

Arguments:

imports The list of the import job IDs as returned by the call to start a bulk import job or list
of Import objects.

Returns: Collection with list of Import objects.

Examples:

\dontrun{
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$bulk_get(
imports = list("import-job-id-1", "import-job-id-2")
)

}

Method bulk_submit_import(): This call lets you perform a bulk import of files from your
volume (either Amazon Web Services or Google Cloud Storage) into your project on the Platform.
You can use this call to either import files to a specific folder or a project but you can also use it to
import a folder and its files into another destination folder while preserving folder structure. One
call can contain up to 100 items. Learn more about using the Volumes API for Amazon S3 and
for Google Cloud Storage.

Usage:

https://docs.sevenbridges.com/docs/aws-cloud-storage-tutorial
https://docs.sevenbridges.com/docs/google-cloud-storage-tutorial

102 Imports

Imports$bulk_submit_import(items)

Arguments:
items Nested list of elements containing information about each file/folder to be imported. For

each element, users must provide:
• source_volume - Volume object or its ID to import files/folders from,
• source_location - Volume-specific location pointing to the file or folder to import. This

location should be recognizable to the underlying cloud service as a valid key or path to
the item. If the item being imported is a folder, its path should end with a /.
Please note that if this volume was configured with a prefix parameter when it was cre-
ated, the value of prefix will be prepended to the location before attempting to locate the
item on the volume.

• destination_project - Project object or ID to import files/folders into. Should not be
used together with destination_parent. If project is used, the items will be imported to
the root of the project’s files.

• destination_parent - File object of type ’folder’ or its ID to import files/folders into.
Should not be used together with destination_project. If parent is used, the import will
take place into the specified folder, within the project to which the folder belongs.

• name - The name of the alias to create. This name should be unique to the project. If
the name is already in use in the project, you should use the autorename parameter in
this call to automatically rename the item (by prefixing its name with an underscore and
number).
If name is omitted, the alias name will default to the last segment of the complete loca-
tion (including the prefix) on the volume. Segments are considered to be separated with
forward slashes (’/’).

• autorename - Whether to automatically rename the item (by prefixing its name with an
underscore and number) if another one with the same name already exists at the destina-
tion.

• preserve_folder_structure - Whether to keep the exact source folder structure. The
default value is TRUE if the item being imported is a folder. Should not be used if you
are importing a file.

Example of the list:
items <- list(

list(
source_volume = 'rfranklin/my-volume',
source_location = 'chimeras.html.gz',
destination_project = 'rfranklin/my-project'

),
list(
source_volume = 'rfranklin/my-volume',
source_location = 'my-folder/',
destination_project = 'rfranklin/my-project',
autorename = TRUE,
preserve_folder_structure = TRUE

),
list(
source_volume = 'rfranklin/my-volume',
source_location = 'my-volume-folder/',

Imports 103

destination_parent = '567890abc1e5339df0414123',
name = 'new-folder-name',
autorename = TRUE,
preserve_folder_structure = TRUE

)
)

Read more on how to import folders from your volume into a project or a project folder.
Utility function prepare_items_for_bulk_import can help you prepare the items pa-
rameter based on the provided list of VolumeFile or VolumePrefix objects.

Returns: Collection with list of Import objects.

Examples:

\dontrun{
imports_object <- Imports$new(

auth = auth
)

Submit new import into a project
imports_object$bulk_submit_import(items = list(
list(
source_volume = "rfranklin/my-volume",
source_location = "my-file.txt",
destination_project = test_project_object,
autorename = TRUE

),
list(
source_volume = "rfranklin/my-volume",
source_location = "my-folder/",
destination_parent = "parent-folder-id",
autorename = FALSE,
preserve_folder_structure = TRUE

)
)
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Imports$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Imports$query`
--

https://docs.sevenbridges.com/reference/start-a-bulk-import-job#import-a-volume-folder-into-a-specific-folder

104 Imports

Not run:
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$query()

End(Not run)

--
Method `Imports$get`
--

Not run:
imports_object <- Imports$new(

auth = auth
)

List import job
imports_object$get(id = id)

End(Not run)

--
Method `Imports$submit_import`
--

Not run:
imports_object <- Imports$new(

auth = auth
)

Submit new import into a project
imports_object$submit_import(
source_location = volume_file_object,
destination_project = test_project_object,
autorename = TRUE
)

End(Not run)

--
Method `Imports$bulk_get`
--

Not run:
imports_object <- Imports$new(

auth = auth

Invoice 105

)

List import job
imports_object$bulk_get(
imports = list("import-job-id-1", "import-job-id-2")
)

End(Not run)

--
Method `Imports$bulk_submit_import`
--

Not run:
imports_object <- Imports$new(

auth = auth
)

Submit new import into a project
imports_object$bulk_submit_import(items = list(
list(

source_volume = "rfranklin/my-volume",
source_location = "my-file.txt",
destination_project = test_project_object,
autorename = TRUE

),
list(

source_volume = "rfranklin/my-volume",
source_location = "my-folder/",
destination_parent = "parent-folder-id",
autorename = FALSE,
preserve_folder_structure = TRUE

)
)
)

End(Not run)

Invoice R6 Class representing invoice information.

Description

R6 Class representing invoice information.

Details

This object contains information about a selected invoice, including costs for analysis, storage, and
the invoice period.

106 Invoice

Super class

sevenbridges2::Item -> Invoice

Public fields

URL List of URL endpoints for this resource.
id Invoice identifier.
pending Invoice approval status.
approval_date Invoice approval date.
invoice_period Invoicing period (from-to).
analysis_costs Costs of your analysis.
storage_costs Storage costs.
total Total costs.

Methods

Public methods:
• Invoice$new()

• Invoice$print()

• Invoice$reload()

• Invoice$clone()

Method new(): Create new Invoice object.
Usage:
Invoice$new(res = NA, ...)

Arguments:
res Response containing Invoice object information.
... Other response arguments.

Method print(): Print invoice information as a bullet list.
Usage:
Invoice$print()

Examples:
\dontrun{
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print invoice object
invoice_object$print()

}

Invoice 107

Method reload(): Refresh the Invoice object with updated information.

Usage:
Invoice$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Invoice object.

Examples:

\dontrun{
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload invoice object
invoice_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Invoice$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Invoice$print`
--

Not run:
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print invoice object
invoice_object$print()

End(Not run)

108 Invoices

--
Method `Invoice$reload`
--

Not run:
x is API response when invoice is requested
invoice_object <- Invoice$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload invoice object
invoice_object$reload()

End(Not run)

Invoices R6 Class representing invoices endpoints

Description

R6 Class representing invoice resource endpoints

Super class

sevenbridges2::Resource -> Invoices

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Invoices$new()

• Invoices$query()

• Invoices$get()

• Invoices$clone()

Method new(): Create a new Invoices object.

Usage:
Invoices$new(...)

Arguments:

Invoices 109

... Other response arguments.

Method query(): The call returns information about all your available invoices, unless you use
the billing_group query parameter to specify the ID of a particular billing group, in which case
it will return the invoice incurred by that billing group only.

Usage:
Invoices$query(
billing_group = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

billing_group ID of a billing group or billing group object you want to list invoices for.
Optional.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like query parameters or ’fields’,
etc.

Returns: Collection of Invoice objects.

Examples:

\dontrun{
invoices_object <- Invoices$new(
auth = auth

)

List all your invoices
invoices_object$query(billing_group = billing_group)

}

Method get(): This call retrieves information about a selected invoice, including the costs
for analysis and storage, and the invoice period. Use the call to list invoices to retrieve the
invoice_ids for a specified billing group.

Usage:
Invoices$get(id, ...)

Arguments:

id The ID of the invoice you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Invoice object.

Examples:

110 Invoices

\dontrun{
invoices_object <- Invoices$new(
auth = auth

)

Get a single invoice by id
invoices_object$get(id = id)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Invoices$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Invoices$query`
--

Not run:
invoices_object <- Invoices$new(

auth = auth
)

List all your invoices
invoices_object$query(billing_group = billing_group)

End(Not run)

--
Method `Invoices$get`
--

Not run:
invoices_object <- Invoices$new(

auth = auth
)

Get a single invoice by id
invoices_object$get(id = id)

End(Not run)

Item 111

Item R6 Class Representing an Item

Description

Base class for describing objects: Project, Task, App, File, etc.

Public fields

response Raw response from the request.

href Item’s API request URL.

auth Seven Bridges Authentication object.

Methods

Public methods:
• Item$new()

• Item$reload()

• Item$clone()

Method new(): Create a new Item object.

Usage:
Item$new(href = NA, response = NA, auth = NA)

Arguments:

href Item’s API request URL.
response Raw API response.
auth Seven Bridges Authentication object.

Method reload(): Reload the Item (resource).

Usage:
Item$reload(cls, ...)

Arguments:

cls Item class object.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Item$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

112 Member

Member R6 Class representing a project member

Description

R6 Class representing a resource for managing project members.

Super class

sevenbridges2::Item -> Member

Public fields

id Member’s ID.

username Member’s username.

email Member’s email.

type Member’s type.

permissions Member’s permissions.

Methods

Public methods:
• Member$new()

• Member$print()

• Member$reload()

• Member$clone()

Method new(): Create a new Member object.

Usage:
Member$new(res = NA, ...)

Arguments:

res Response containing Member object information.
... Other response arguments.

Method print(): Print method for Member class.

Usage:
Member$print()

Examples:

\dontrun{
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,

Member 113

auth = auth,
response = attr(x, "response")

)

Print member object
member_object$print()

}

Method reload(): Reload Member object information.

Usage:
Member$reload()

Examples:

\dontrun{
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload member object
member_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Member$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Member$print`
--

Not run:
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

114 Part

Print member object
member_object$print()

End(Not run)

--
Method `Member$reload`
--

Not run:
x is API response when member is requested
member_object <- Member$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload member object
member_object$reload()

End(Not run)

Part R6 Class representing a part of the uploading file

Description

R6 Class representing a resource for managing parts of the files’ uploads.

Public fields

URL List of URL endpoints for this resource.

part_number Part number.

part_size Part size.

url The URL to which to make the HTTP part upload request.

expires ISO 8601 combined date and time representation in Coordinated Universal Time (UTC)
by when the HTTP part upload request should be made.

headers A map of headers and values that should be set when making the HTTP part upload
request.

success_codes A list of status codes returned by the HTTP part upload request that should be
recognized as success. A successful part upload request should be reported back to the API
in a call to report an uploaded file part by passing the information collected from the report
object.

report Report object.

Part 115

etag ETag received after starting a part upload.

auth Authentication object.

response Response object.

Methods

Public methods:
• Part$new()

• Part$print()

• Part$upload_info_part()

• Part$upload_complete_part()

• Part$clone()

Method new(): Create a new Part object.

Usage:
Part$new(
part_number = NA,
part_size = NA,
url = NA,
expires = NA,
headers = NA,
success_codes = NA,
report = NA,
etag = NA,
auth = NA

)

Arguments:

part_number Part number.
part_size Part size.
url The URL to which to make the HTTP part upload request.
expires Combined date and time representation in UTC by when the HTTP part upload request

should be made.
headers A map of headers and values that should be set when making the HTTP part upload

request.
success_codes A list of status codes returned by the HTTP part upload request that should be

recognized as success.
report Report object.
etag ETag received after starting a part upload.
auth Seven Bridges Authentication object.

Method print(): Print method for Part class.

Usage:
Part$print()

Examples:

116 Part

\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Print upload part information
upload_part_object$print()

}

Method upload_info_part(): Get upload part info.

Usage:
Part$upload_info_part(upload_id)

Arguments:
upload_id Upload object or ID of the upload process to which the part belongs.

Examples:
\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Get upload part status information
upload_part_object$upload_info_part(upload_id = upload_id)

}

Method upload_complete_part(): Report an uploaded part.

Usage:
Part$upload_complete_part(upload_id)

Arguments:
upload_id Upload object or ID of the upload process that part belongs to.

Examples:
\dontrun{
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Report an uploaded part
upload_part_object$upload_complete_part(upload_id = upload_id)

}

Method clone(): The objects of this class are cloneable with this method.

Part 117

Usage:
Part$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Part$print`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Print upload part information
upload_part_object$print()

End(Not run)

--
Method `Part$upload_info_part`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Get upload part status information
upload_part_object$upload_info_part(upload_id = upload_id)

End(Not run)

--
Method `Part$upload_complete_part`
--

Not run:
upload_part_object <- Part$new(

part_number = part_number,
part_size = part_size,
auth = auth

)

Report an uploaded part
upload_part_object$upload_complete_part(upload_id = upload_id)

118 Permission

End(Not run)

Permission R6 Class representing member’s permissions

Description

R6 Class representing member’s permissions.

Super class

sevenbridges2::Item -> Permission

Public fields

write Write permission.

read Read permission.

copy Copy permission.

execute Execute permission.

admin Admin permission.

Methods

Public methods:
• Permission$new()

• Permission$print()

• Permission$reload()

• Permission$clone()

Method new(): Create a new Permission object.

Usage:
Permission$new(
read = TRUE,
copy = FALSE,
write = FALSE,
execute = FALSE,
admin = FALSE,
...

)

Arguments:

read User can view file names, metadata, and workflows. They cannot view file contents.
All members of a project have read permissions by default. Even if you try setting read
permissions to FALSE, they will still default to TRUE.

Permission 119

copy User can view file content, copy, and download files from a project. Set value to TRUE to
assign the user copy permission. Set to FALSE to remove copy permission.

write User can add, modify, and remove files and workflows in a project. Set value to TRUE to
assign the user write permission. Set to FALSE to remove write permission.

execute User can execute workflows and abort tasks in a project. Set value to TRUE to assign
the user execute permission. Set to FALSE to remove execute permission.

admin User can modify another user’s permissions on a project, add or remove people from the
project and manage funding sources. They also have all of the above permissions. Set value
to TRUE to assign the user admin permission. Set to FALSE to remove admin permission.

... Other response arguments.

Method print(): Print method for Permission class.

Usage:
Permission$print()

Examples:

\dontrun{
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")

)
Print permission object
permission_object$print()

}

Method reload(): Reload Permission object information.

Usage:
Permission$reload()

Examples:

\dontrun{
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,

120 Permission

response = attr(x, "response")
)

Reload permission object
permission_object$reload()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Permission$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Permission$print`
--

Not run:
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print permission object
permission_object$print()

End(Not run)

--
Method `Permission$reload`
--

Not run:
x is API response when permission is requested
permission_object <- Permission$new(

write = x$write,
read = x$read,
copy = x$copy,
execute = x$execute,
admin = x$admin,
href = x$href,

prepare_items_for_bulk_export 121

auth = auth,
response = attr(x, "response")
)

Reload permission object
permission_object$reload()

End(Not run)

prepare_items_for_bulk_export

Prepare items for bulk export

Description

Utility function to prepare the items parameter, a list of elements containing information about
each file to be exported using the bulk_submit_export() method.

Usage

prepare_items_for_bulk_export(
files,
destination_volume,
destination_location_prefix = NULL,
overwrite = TRUE,
properties = NULL

)

Arguments

files A list of File objects or list of strings (IDs) of the files you are about to export
to a volume.

destination_volume

Either a Volume object or the ID of the volume to which the file will be exported.

destination_location_prefix

Character. If the volume has been configured with a prefix parameter,
destination_location_prefix value will be prepended to location before at-
tempting to create the file on the volume. This parameter can be treated as a path
to a new file on the volume. The default value is NULL.
If you would like to export the file into a folder on the volume, please add folder
name as the prefix before the file name in the "<folder-name>/" form. Re-
member to put a slash character ("/") at the end of the string.
Keep in mind that the same prefix will be added to all items (files) in the resulting
list.

122 prepare_items_for_bulk_export

overwrite Logical. If this is set to TRUE and a named file exists in the project where the
alias is about to be created, the existing file will be deleted. FALSE by default.
Keep in mind that the same overwrite option will be applied to all items (files)
in the resulting list.

properties Named list of additional volume properties, like:

• sse_algorithm - S3 server-side encryption to use when exporting to this
bucket. Supported values: AES256 (SSE-S3 encryption), aws:kms, null
(no server-side encryption). Default: AES256.

• sse_aws_kms_key_Id: Applies to type: s3. If AWS KMS encryption is
used, this should be set to the required KMS key. If not set and aws:kms is
set as sse_algorithm, default KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object during export.
Supported values: any one of S3 canned ACLs; null (do not apply canned
ACLs). Default: null.

Keep in mind that the same properties will be applied to all items (files) in the
resulting list.

Details

Based on the provided list of File objects or file IDs, this function allows you to set the following
fields for each item:

• source_file

• destination_volume

• destination_location

• overwrite

• properties

However, keep in mind that there are certain constraints:

• The same destination_volume applies to all items in the resulting list.

• The same applies to overwrite and properties parameters.

• By default, the destination_location field is populated with the source file name. Upon
retrieval of the list of items for bulk export, you can manually update the
destination_location field for each element of the list as needed. Additionally, you have
the flexibility to manually modify any other fields in the list if required.

Value

List of body params items for starting an export job.

See Also

Exports, File, Volume

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

prepare_items_for_bulk_import 123

Examples

Not run:
Example 1: Prepare 3 items for bulk export action
file_object_1 <- a$files$get(id = "file_1_ID")
file_object_2 <- a$files$get(id = "file_2_ID")
file_object_3 <- a$files$get(id = "file_3_ID")

files_to_export <- list(file_object_1, file_object_2, file_object_3)

prepare_items_for_bulk_export(files_to_export,
destination_volume = "aws_example_volume"

)

End(Not run)
Not run:
Example 2: Prepare 3 items for bulk export action into some folder
on the volume - use folder name as prefix before file names
file_object_1 <- a$files$get(id = "file_1_ID")
file_object_2 <- a$files$get(id = "file_2_ID")
file_object_3 <- a$files$get(id = "file_3_ID")

files_to_export <- list(file_object_1, file_object_2, file_object_3)

prepare_items_for_bulk_export(files_to_export,
destination_volume = "aws_example_volume",
destination_location_prefix = "example_folder/"

)

End(Not run)

prepare_items_for_bulk_import

Prepare items for bulk import

Description

Utility function to prepare the items parameter, a list of elements containing information about
each file or folder to be imported using the bulk_submit_import() method.

Usage

prepare_items_for_bulk_import(
volume_items,
destination_project = NULL,
destination_parent = NULL,
autorename = FALSE,
preserve_folder_structure = TRUE

)

124 prepare_items_for_bulk_import

Arguments

volume_items A list of VolumeFile or VolumePrefix objects to be imported.
destination_project

Destination project ID or Project object. Not required, but either
destination_project or destination_parent directory must be provided.

destination_parent

Folder ID or File object (with type = 'FOLDER'). Not required, but either
destination_project or destination_parent directory must be provided.

autorename Logical indicating whether to autorename conflicting files (default is FALSE). Set
to TRUE if you want to automatically rename the item (by prefixing its name with
an underscore and number) if another one with the same name already exists at
the destination. Bear in mind that if used with folders import, the folder content
will be renamed, not the whole folder. Keep in mind that the same autorename
option will be applied to all items.

preserve_folder_structure

Logical indicating whether to preserve folder structure. Set to TRUE if you want
to keep the exact source folder structure. The default value is TRUE if the item
being imported is a folder. Should not be used if you are importing a file. Bear in
mind that if you use preserve_folder_structure = FALSE, the response will
be the parent folder object containing imported files alongside with other files
if they exist. Keep in mind that the same preserve_folder_structure option
will be applied to all folders.

Details

Based on the provided list of VolumeFile or VolumePrefix objects, this function allows you to set
the following fields for each item:

• source_volume

• source_location

• destination_project or destination_parent

• autorename

• preserve_folder_structure

However, keep in mind that there are certain constraints:

• The same destination_project/destination_parent selection applies to all items in the
resulting list.

• The same applies to autorename and preserve_folder_structure parameters.

• This function doesn’t allow specification of the name of aliases to create. This is something
that should be specified per item, therefore it cannot be applied to the entire list. However, once
you have the output of the prepare_items_for_bulk_import function you can manually add
the name field to certain items if necessary.

Value

A list of elements containing information about each file/folder to be imported.

Project 125

See Also

Imports, VolumeFile, VolumePrefix

Examples

Not run:
Example 1: Prepare 2 items for bulk import action - provide destination
project
volume_obj_1 <- a$volumes$get
volume_obj_2 <- a$volumes$get

volumes_to_import <- list(volume_obj_1, volume_obj_2)

destination_project <- a$projects$get(id = "project_id")

prepare_items_for_bulk_import(
volume_items = volumes_to_import,
destination_project = destination_project

)

End(Not run)
Not run:
Example 2: Prepare 2 items for bulk import action - provide destination
parent
volume_obj_1 <- a$volumes$get
volume_obj_2 <- a$volumes$get

volumes_to_import <- list(volume_obj_1, volume_obj_2)

destination_parent <- a$files$get(id = "folder_id")

prepare_items_for_bulk_import(
volume_items = volumes_to_import,
destination_parent = destination_parent

)

End(Not run)

Project R6 Class representing a project.

Description

R6 Class representing a central resource for managing projects.

Super class

sevenbridges2::Item -> Project

126 Project

Public fields

URL List of URL endpoints for this resource.

id Project identifier. It consists of project owner’s username or if you are using Enterprise, then
the Division name and project’s short name in form of
<owner_username>/<project-short-name> or
<division-name>/<project-short-name>.

name Project’s name.

billing_group The ID of the billing group for the project.

description Project’s description.

type Project’s type. All projects have type v2.

tags The list of project tags.

settings A list which contains detailed project settings. The following fields are part of the set-
tings object:

• locked - If set TRUE, the project is locked down. Locking down a project prevents any
Seven Bridges team member from viewing any information about the task.

• use_interruptible_instances - Defines the use of spot instances. If not included in
the request, spot instances are enabled by default.

• use_memoization - Set to FALSE by default. If set to TRUE memoization is enabled.
• use_elastic_disk - If set to TRUE Elastic disk is enabled.
• intermediate_files (list) - Contains the following subfields:

– retention - Specifies that intermediate files should be retained for a limited amount
of time. The value is always LIMITED.

– duration - Specifies intermediate files retention period in hours. The minimum
value is 1. The maximum value is 120 and the default value is 24.

root_folder ID of the project’s root folder.

created_by Username of the person who created the project.

created_on Date and time of project creation.

modified_on Date and time describing when the project was last modified.

permissions An object containing the information about user’s permissions within the project.

category Project’s category. By default projects are PRIVATE.

Methods

Public methods:
• Project$new()

• Project$print()

• Project$detailed_print()

• Project$reload()

• Project$update()

• Project$delete()

• Project$list_members()

https://docs.sevenbridges.com/docs/about-spot-instances
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

Project 127

• Project$add_member()

• Project$remove_member()

• Project$get_member()

• Project$modify_member_permissions()

• Project$list_files()

• Project$create_folder()

• Project$get_root_folder()

• Project$list_apps()

• Project$create_app()

• Project$list_tasks()

• Project$list_imports()

• Project$create_task()

• Project$clone()

Method new(): Create a new Project object.

Usage:
Project$new(res = NA, ...)

Arguments:

res Response containing Project object information.
... Other response arguments.

Method print(): Basic print method for Project class.

Usage:
Project$print()

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print project object
project_object$print()

}

Method detailed_print(): Detailed print method for Project class.

Usage:
Project$detailed_print()

Details: This method allows users to print all the fields from the Project object more descrip-
tively.

128 Project

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print project object in detail
project_object$detailed_print()

}

Method reload(): Reload Project object information.

Usage:
Project$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload project object
project_object$reload()

}

Method update(): Method that allows you to edit an already existing project. As a project
Admin you can use it to change the name, settings, tags or billing group of the project.
Users with write permissions in the project can change the project description.

Usage:
Project$update(
name = NULL,
description = NULL,
billing_group = NULL,
settings = NULL,
tags = NULL,
...

)

Project 129

Arguments:

name New name of the project you are updating.
description New description of the project you are updating.
billing_group Billing object or ID of a particular billing group you want to set to the project.
settings Contains detailed project settings as explained in previous methods. Check our API

documentation.
tags The list of project tags you want to update.
... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,

etc.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Change project object name
project_object$update(name = name)

}

Method delete(): Method that allows you to delete a project from the platform. It can only be
successfully made if you have admin status for the project.
Please be careful when using this method and note that calling it will permanently delete the
project from the platform.

Usage:
Project$delete()

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete project object
project_object$delete()

}

Method list_members(): Method for listing all the project members.

https://docs.sevenbridges.com/reference/edit-a-project
https://docs.sevenbridges.com/reference/edit-a-project

130 Project

Usage:
Project$list_members(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Member objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List members in a project
project_object$list_members()

}

Method add_member(): Method for adding new members to a specified project. The call can
only be successfully made by a user who has admin permissions in the project.

Usage:
Project$add_member(
user = NULL,
email = NULL,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, execute = FALSE, admin =

FALSE)
)

Arguments:

user The Seven Bridges Platform username of the person you want to add to the project or
object of class Member containing user’s username.

email The email address of the person you want to add to the project. This has to be the email
address that the person used when registering for an account on the Seven Bridges Platform.

permissions List of permissions that will be associated with the project’s member. It can
contain fields: read, copy, write, execute and admin with logical fields - TRUE if certain

Project 131

permission is allowed to the user, or FALSE if it’s not. Requests to add a project member
must include the key permissions. However, if you do not include a value for some permis-
sion, it will be set to FALSE by default. The exception to this rule is the read permission,
which is the default permission on a project. It enables a user to read project data, including
file names, but access file contents.
Example:
permissions = list(
read = TRUE,
copy = TRUE,
write = FALSE,
execute = FALSE,
admin = FALSE

)

Returns: Member object.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add member to a project
project_object$add_member(

user = "<username_of_a_user_you_want_to_add>",
permissions = list(write = TRUE, execute = TRUE)

)
}

Method remove_member(): A method for removing members from the project. It can only be
successfully run by a user who has admin privileges in the project.

Usage:
Project$remove_member(user)

Arguments:
user The Seven Bridges Platform username of the person you want to remove from the project

or object of class Member containing user’s username.

Examples:
\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,

132 Project

response = attr(x, "response")
)

Remove member from a project
project_object$remove_member(user = user)

}

Method get_member(): This method returns the information about the member of the specified
project.

Usage:
Project$get_member(user, ...)

Arguments:

user The Seven Bridges Platform username of the project member you want to get information
about or object of class Member containing user’s username.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Member object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get member from a project
project_object$get_member(user = user)

}

Method modify_member_permissions(): This method can be used to edit a user’s permissions
in a specified project. It can only be successfully made by a user who has admin permissions in
the project.

Usage:
Project$modify_member_permissions(
user = NULL,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, execute = FALSE, admin =

FALSE)
)

Arguments:

user The Seven Bridges Platform username of the person you want to modify permissions on
the volume for or object of class Member containing user’s username.

Project 133

permissions List of permissions that will be associated with the project’s member. It can
contain fields: read, copy, write, execute and admin with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Requests to add a project member
must include the key permissions. However, if you do not include a value for some permis-
sion, it will be set to FALSE by default. The exception to this rule is the read permission,
which is the default permission on a project. It enables a user to read project data, including
file names, but access file contents.

Example:

permissions = list(read = TRUE, copy = TRUE)

Returns: Permission object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Modify member permissions in a project
project_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = FALSE)
)

}

Method list_files(): List all project’s files and folders.

Usage:
Project$list_files(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of File objects.

Examples:

134 Project

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List files in a project
project_object$list_files()

}

Method create_folder(): Create a new folder under the project’s root directory. Every project
on the Seven Bridges Platform is represented by a root folder which contains all the files associated
with a particular project. You can create first level folders within this root folder by using this
function.

Usage:
Project$create_folder(name)

Arguments:

name Folder name.

Returns: File object of type ’FOLDER’.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List files in a project
project_object$create_folder(name = "new_folder")

}

Method get_root_folder(): Get project’s root folder object

Usage:
Project$get_root_folder()

Returns: File object of type ’FOLDER’.

Examples:

\dontrun{
x is API response when project is requested

Project 135

project_object <- Project$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get root folder in a project
project_object$get_root_folder()

}

Method list_apps(): This call lists all apps in the project.

Usage:
Project$list_apps(
query_terms = NULL,
id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

query_terms A list of search terms used to filter apps based on their details. Each term is
case-insensitive and can relate to the app’s name, label, toolkit, toolkit version, category,
tagline, or description. You can provide a single term (e.g., list("Compressor")) or mul-
tiple terms (e.g., list("Expression", "Abundance")) to search for apps that match all
the specified terms. If a term matches any part of the app’s details, the app will be included
in the results. Search terms can also include phrases (e.g., list("Abundance estimates
input")), which will search for exact matches within app descriptions or other fields.

id Use this parameter to query Project’s apps based on their ID.
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like other query parameters or
’fields’, etc.

Returns: Collection of App objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

136 Project

)

List apps in a project
project_object$list_apps(query_terms = query_term)

}

Method create_app(): This call creates app in project.

Usage:
Project$create_app(
raw = NULL,
from_path = NULL,
name,
raw_format = c("JSON", "YAML")

)

Arguments:

raw The body of the request should be a CWL app description saved as a JSON or YAML file. For
a template of this description, try making the call to get raw CWL for an app about an app
already in one of your projects. Shouldn’t be used together with from_path parameter.

from_path File containing CWL app description. Shouldn’t be used together with raw param-
eter.

name A short name for the app (without any non-alphanumeric characters or spaces).
raw_format The type of format used (JSON or YAML).

Returns: App object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Create app in a project
project_object$create_app(raw = raw)

}

Method list_tasks(): This call lists all tasks from project you can access.
Read more about how to use query parameters properly here.

Usage:
Project$list_tasks(
status = NULL,
parent = NULL,
created_from = NULL,

https://docs.sevenbridges.com/reference/list-tasks-you-can-access

Project 137

created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = c("created_time", "start_time", "name", "end_time", "created_by"),
order = c("asc", "desc"),
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
status You can filter the returned tasks by their status. Set the value of status to one of the

following values:
• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED.

parent Provide task ID or task object of the parent task to return all child tasks from that parent.
A parent task is a task that specifies the criteria by which to batch its inputs into a series
of further sub-tasks, called child tasks. See the documentation on batching tasks for more
details on how to run tasks in batches.

created_from Enter the starting date string for querying tasks created on the specified date and
onwards.

created_to Enter the ending date string for querying tasks created until the specified date. You
can use it in combination with created_from to specify a time interval.

started_from Enter the starting date string for querying tasks started on the specified date and
onwards.

started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sort can be done only by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

https://docs.sevenbridges.com/docs/about-batch-analyses

138 Project

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List tasks in a project
project_object$list_tasks()

}

Method list_imports(): This call lists imports initiated by a particular user into this destina-
tion project.

Usage:
Project$list_imports(
volume = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

volume Volume id or Volume object. List all imports from particular volume. Optional.
state The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example:
state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Import objects.

Examples:

Project 139

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List import jobs in a project
project_object$list_imports()

}

Method create_task(): This call creates a new task. You can create either a single task or a
batch task by using the app’s default batching, override batching, or disable batching completely.
A parent task is a task that specifies criteria by which to batch its inputs into a series of further sub-
tasks, called child tasks. See the documentation on batching tasks for more details on batching
criteria.

Usage:
Project$create_task(
app,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:
app The ID of an app or an App object you want to run. Recall that apps are specified by their

projects, in the form <project_id>/<app_name>.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

https://docs.sevenbridges.com/docs/about-batch-analyses
https://docs.sevenbridges.com/docs/app-versions

140 Project

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:
execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:
inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Parts of the path enclosed in
angle brackets <> are tokens that are dynamically replaced with corresponding values
during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is

https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

Project 141

either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:

b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for
which you want to define the output location, while the parameters
are defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:

batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

https://docs.sevenbridges.com/docs/about-spot-instances

142 Project

)

Create a task in a project
project_object$create_task(app = app)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Project$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Project$print`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print project object
project_object$print()

End(Not run)

--
Method `Project$detailed_print`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print project object in detail
project_object$detailed_print()

End(Not run)

Project 143

--
Method `Project$reload`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload project object
project_object$reload()

End(Not run)

--
Method `Project$update`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Change project object name
project_object$update(name = name)

End(Not run)

--
Method `Project$delete`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

144 Project

Delete project object
project_object$delete()

End(Not run)

--
Method `Project$list_members`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List members in a project
project_object$list_members()

End(Not run)

--
Method `Project$add_member`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add member to a project
project_object$add_member(

user = "<username_of_a_user_you_want_to_add>",
permissions = list(write = TRUE, execute = TRUE)

)

End(Not run)

--
Method `Project$remove_member`
--

Not run:
x is API response when project is requested

Project 145

project_object <- Project$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Remove member from a project
project_object$remove_member(user = user)

End(Not run)

--
Method `Project$get_member`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get member from a project
project_object$get_member(user = user)

End(Not run)

--
Method `Project$modify_member_permissions`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Modify member permissions in a project
project_object$modify_member_permissions(

user = user,
permission = list(read = TRUE, copy = FALSE)
)

End(Not run)

146 Project

--
Method `Project$list_files`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List files in a project
project_object$list_files()

End(Not run)

--
Method `Project$create_folder`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List files in a project
project_object$create_folder(name = "new_folder")

End(Not run)

--
Method `Project$get_root_folder`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get root folder in a project

Project 147

project_object$get_root_folder()

End(Not run)

--
Method `Project$list_apps`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List apps in a project
project_object$list_apps(query_terms = query_term)

End(Not run)

--
Method `Project$create_app`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Create app in a project
project_object$create_app(raw = raw)

End(Not run)

--
Method `Project$list_tasks`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,

148 Projects

response = attr(x, "response")
)

List tasks in a project
project_object$list_tasks()

End(Not run)

--
Method `Project$list_imports`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List import jobs in a project
project_object$list_imports()

End(Not run)

--
Method `Project$create_task`
--

Not run:
x is API response when project is requested
project_object <- Project$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Create a task in a project
project_object$create_task(app = app)

End(Not run)

Projects R6 Class representing projects endpoints.

Projects 149

Description

R6 Class representing a Projects resource.

Super class

sevenbridges2::Resource -> Projects

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:

• Projects$new()

• Projects$query()

• Projects$get()

• Projects$delete()

• Projects$create()

• Projects$clone()

Method new(): Create new Projects resource object.

Usage:
Projects$new(...)

Arguments:

... Other response arguments.

Method query(): A method to list all projects available to a particular user. If the username is
not provided, all projects available to the currently authenticated user will be listed. Otherwise,
projects will be listed for the user whose username is provided. Please keep in mind that this way
you will only be able to list projects you are a member of.

More details on how to query projects, you can find in our documentation.

Usage:
Projects$query(
name = NULL,
owner = NULL,
tags = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

name Project’s name.
owner The username of the owner whose projects you want to query.

https://docs.sevenbridges.com/reference/list-all-your-projects

150 Projects

tags A list of project tags used to filter the query results. Each tag should be provided as a
string within the list, and tags may include spaces. For example, both "my_tag_1" and "tag
with spaces" are valid tag values. The method will return only projects that have all the
specified tags.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like other query parameters or
’fields’, etc.

Returns: Collection of Project objects.

Examples:

\dontrun{
projects_object <- Projects$new(auth = auth)

Query projects
projects_object$query(name = name)

}

Method get(): This call creates a Project object containing the details of a specified project.

Usage:
Projects$get(id, ...)

Arguments:

id Project ID. It consists of project owner’s username or if you are using Enterprise, then the
Division name and project’s short name in form of
<owner_username>/<project-short-name> or
<division-name>/<project-short-name>.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Project object.

Examples:

\dontrun{
projects_object <- Projects$new(auth = auth)

Get project by id
projects_object$get(id = id)

}

Method delete(): Method that allows you to delete a project from the platform. It can only be
successfully made if you have admin status for the project.
Projects are specified by their IDs, which you can obtain by using Projects$query() to list
projects or by getting a single project using Projects$get(). Please be careful when using this
method and note that calling it will permanently delete the project from the platform.

Projects 151

Usage:
Projects$delete(project, ...)

Arguments:

project Project object or project ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:

\dontrun{
projects_object <- Projects$new(auth = auth)

Delete a project
projects_object$delete(project = project)

}

Method create(): A method for creating a new project.

Usage:
Projects$create(
name,
billing_group = NULL,
description = name,
tags = NULL,
locked = FALSE,
controlled = FALSE,
location = NULL,
use_interruptible_instances = TRUE,
use_memoization = FALSE,
use_elastic_disk = FALSE,
intermediate_files = list(retention = "LIMITED", duration = 24),
...

)

Arguments:

name The name of the project you are creating.
billing_group The Billing object or ID of the billing group for the project.
description Description of the project.
tags The list of project tags.
locked Set this field to TRUE to lock down a project. Locking down a project prevents any

Seven Bridges team member from viewing any information about the task.
controlled Set this field to TRUE to define this project as controlled i.e. one which will contain

controlled data. Set FALSE to define the project as open i.e. one which will contain open
data.

location Specify the location for this project: aws:us-east-1 or aws:us-west-2.
use_interruptible_instances Defines the use of spot instances.
use_memoization Set to FALSE by default. Set to TRUE to enable memoization.
use_elastic_disk Set to TRUE to enable Elastic disk.

https://docs.sevenbridges.com/docs/about-spot-instances
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk

152 Projects

intermediate_files A list defining the retention period for intermediate files. Expected ele-
ments:
• retention - Specifies that intermediate files should be retained for a limited amount of

time. The value is always LIMITED.
• duration - Specifies intermediate files retention period in hours. The minimum value is
1. The maximum value is 120 and the default value is 24.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Project object.

Examples:

\dontrun{
projects_object <- Projects$new(auth = auth)

Create a project
projects_object$create(

name = name,
billing_group = billing_group,
description = description

)
}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Projects$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Projects$query`
--

Not run:
projects_object <- Projects$new(auth = auth)

Query projects
projects_object$query(name = name)

End(Not run)

--
Method `Projects$get`
--

Not run:
projects_object <- Projects$new(auth = auth)

Rate 153

Get project by id
projects_object$get(id = id)

End(Not run)

--
Method `Projects$delete`
--

Not run:
projects_object <- Projects$new(auth = auth)

Delete a project
projects_object$delete(project = project)

End(Not run)

--
Method `Projects$create`
--

Not run:
projects_object <- Projects$new(auth = auth)

Create a project
projects_object$create(

name = name,
billing_group = billing_group,
description = description

)

End(Not run)

Rate R6 Class Representing a Rate Limit for a user

Description

Rate object containing information about user’s rate limit.

Details

This is the main object for Rate Limit.

Super class

sevenbridges2::Item -> Rate

154 Rate

Public fields

rate A list containing the information about user’s current rate limit. It consists of the following
fields:

• limit Indicates how many requests can be made in five minutes.
• remaining Indicates how many requests remain.
• reset Indicates the time when the request rate limit will be reset.

instance A list containing the information about user’s current instance limit. It consists of the
following fields:

• limit Indicates the total number of instances available to the user. For the first few
months, instance limits are unlimited. This is indicated by a special limit of -1. Corre-
spondingly, the remaining value is high.

• remaining Indicates the number of the instances that are available at the moment. For
the first few months, instance limits are unlimited. This is indicated by a high remaining
value. Correspondingly, the limit is set to a special value of -1.

Methods

Public methods:

• Rate$new()

• Rate$print()

• Rate$clone()

Method new(): Create a new Rate limit object.

Usage:
Rate$new(res = NA, ...)

Arguments:

res Response containing Rate limit object info.
... Other response arguments.

Method print(): Print rate limit information as a bullet list.

Usage:
Rate$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Rate$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Resource 155

Resource R6 Class Representing a Resource

Description

Base class for describing a resource.

Details

This is a base class for describing a resource on the platform: Projects, Tasks, Volumes, Files, Apps
etc.

Public fields

auth Seven Bridges Authentication object.

URL List of URL endpoints for this resource.

Methods

Public methods:
• Resource$new()

• Resource$query()

• Resource$get()

• Resource$delete()

• Resource$clone()

Method new(): Create a new Resource object.

Usage:
Resource$new(auth = NA)

Arguments:

auth Seven Bridges Authentication object.

Method query(): Generic query implementation that is used by the resources.

Usage:
Resource$query(...)

Arguments:

... Parameters that will be passed to core api() function.

Method get(): Generic get implementation that fetches a single resource from the server.

Usage:
Resource$get(cls, id, ...)

Arguments:

cls Resource class object.

156 Task

id Object id.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Method delete(): Generic implementation to delete a resource from the server.

Usage:
Resource$delete(id, ...)

Arguments:

id Object id.
... Other arguments that can be passed to core api() function.
cls Resource class object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Resource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Task R6 Class representing a Task

Description

R6 Class representing a resource for managing tasks.

Super class

sevenbridges2::Item -> Task

Public fields

URL List of URL endpoints for this resource.

id The ID of the task.

name The name of the task.

status Task status (different from execution_status). Allowed values:

• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED

description An optional description of a task.

project Identifier of the project that the task is located in.

Task 157

app The identifier of the app that was used for the task.

created_by Username of the task creator.

executed_by Username of the task executor.

created_on The time in form of string when the task was created.

start_time Task start time in form of string.

end_time Task end time in form of string.

origin ID of the entity that created the task, e.g., an automation run, if task was created by an
automation run.

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to allow
the use of spot instances.

batch TRUE for batch tasks, FALSE for regular and child tasks (batch this task; if FALSE, will not
create a batch task).

batch_by Batching criteria (list).

batch_group Batch group for a batch task (list). Represents the group that is assigned to the child
task from the batching criteria that was used when the task was started.

batch_input Input identifier on to which to apply batching.

batch_parent Parent task ID for a batch child. (batch task which is the parent of this task).

execution_settings Execution settings list for the task.

execution_status Task execution status list - info about current execution status.

errors Validation errors list stored as a high-level errors array property in the API response.

warnings Validation warnings list from API response.

price Task cost (list) - contains amount and currency.

inputs List of inputs that were submitted to the task.

outputs List of generated outputs from the task.

output_location List of locations where task outputs will be stored.

Methods

Public methods:
• Task$new()

• Task$print()

• Task$reload()

• Task$run()

• Task$abort()

• Task$clone_task()

• Task$get_execution_details()

• Task$list_batch_children()

• Task$delete()

• Task$rerun()

• Task$update()

• Task$clone()

158 Task

Method new(): Create new Task object.

Usage:
Task$new(res = NA, ...)

Arguments:
res Response containing Task object information.
... Other response arguments.

Method print(): Print method for Task class.

Usage:
Task$print()

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print task object
task_object$print()

}

Method reload(): Reload Task object information.

Usage:
Task$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload task object
task_object$reload()

}

Task 159

Method run(): This call runs (executes) the task. Only tasks whose status is DRAFT can be run.

Usage:
Task$run(
batch = NULL,
use_interruptible_instances = NULL,
in_place = TRUE,
...

)

Arguments:
batch Set this to FALSE to disable the default batching for this task. Running a batch task is a

recommended way to run multiple tasks considering the API rate limit (learn more).
use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to

allow the use of spot instances.
in_place Default TRUE. Should the new object of Task class be returned or the current to be

reinitialized.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Run task
task_object$run()

}

Method abort(): This call aborts the specified task. Only tasks whose status is RUNNING or
QUEUED may be aborted.

Usage:
Task$abort(in_place = TRUE, ...)

Arguments:
in_place Default TRUE. Should the new object of Task class be returned or the current to be

reinitialized.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested

https://docs.sevenbridges.com/docs/api-rate-limit
https://docs.sevenbridges.com/docs/about-spot-instances

160 Task

task_object <- Task$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

. # Run task
task_object$run()

Then abort task
task_object$abort()

}

Method clone_task(): This call clones the specified task. Once cloned, the task can either be
in DRAFT mode or immediately ran, by setting the run parameter to TRUE.

Usage:
Task$clone_task(run = FALSE, ...)

Arguments:

run Set this to TRUE in order to create a draft task and execute it immediately. Default: FALSE.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Clone task object
task_object$clone_task()

}

Method get_execution_details(): This call returns execution details of the specified task.
The task is referred to by its ID, which you can obtain by making the call to list all tasks you
can access. The call breaks down the information into the task’s distinct jobs. A job is a single
subprocess carried out in a task. The information returned by this call is broadly similar to that
which can be found in the task stats and logs provided on the Platform. The task execution details
include the following information:

• The name of the command line job that executed
• The start time of the job

Task 161

• End time of the job (if it completed)
• The status of the job (DONE, FAILED, or RUNNING)
• Information on the computational instance that the job was run on, including the provider ID,

the type of instance used and the cloud service provider
• A link that can be used to download the standard error logs for the job.
• SHA hash of the Docker image (’checksum’).

Usage:
Task$get_execution_details(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: List of execution details.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get task execution details
task_object$get_execution_details()

}

Method list_batch_children(): This call retrieves batch child tasks for this task if its a batch
task.

Usage:
Task$list_batch_children(
status = NULL,
project = NULL,
created_from = NULL,
created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = NULL,
order = NULL,
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

162 Task

Arguments:

status You can filter the returned tasks by their status. Set the value of status to one of the
following values:
• QUEUED
• DRAFT
• RUNNING
• COMPLETED
• ABORTED
• FAILED.

project Provide the project ID or Project object you wish to list the tasks from.
created_from Enter the starting date string for querying tasks created on the specified date and

onwards.
created_to Enter the ending date string for querying tasks created until the specified date. You

can use it in combination with created_from to specify a time interval.
started_from Enter the starting date string for querying tasks started on the specified date and

onwards.
started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sort can be done only by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List batch children of a task

Task 163

task_object$list_batch_children()
}

Method delete(): This call deletes the specified task. The task is referred to by its ID, which
you can obtain by making the call to list all tasks you can access.

Usage:
Task$delete(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete task
task_object$delete()

}

Method rerun(): This call reruns (executes) the specified task.

Usage:
Task$rerun(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:

\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Rerun task
task_object$rerun()

}

164 Task

Method update(): Change the details of the specified task, including its name, description, and
inputs. Note that you can only modify tasks with a task status of DRAFT. Tasks which are RUNNING,
QUEUED, ABORTED, COMPLETED or FAILED cannot be modified in order to enable the reproducibility
of analyses which have been queued for execution or has initiated executing. There are two things
to note if you are editing a batch task:

• 1 If you want to change the input on which to batch and the batch criteria, you need to specify
the batch_input and batch_by parameters together in the same function call.

• 2 If you want to disable batching on a task, set batch to false. Or, you can also set the
parameters batch_input and batch_by to NULL.

Usage:
Task$update(
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
...

)

Arguments:

name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:

execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:

inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",

https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

Task 165

"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),
"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/ or a path on an attached volume, such as
volumes://volume_name/<project_id>/html. Parts of the path enclosed in angle
brackets <> are tokens that are dynamically replaced with corresponding values during
task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:
b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for
which you want to define the output location, while the parameters

166 Task

are defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Examples:
\dontrun{
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Update task
task_object$update(name = new_name)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Task$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `Task$print`
--

Task 167

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print task object
task_object$print()

End(Not run)

--
Method `Task$reload`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload task object
task_object$reload()

End(Not run)

--
Method `Task$run`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Run task
task_object$run()

End(Not run)

168 Task

--
Method `Task$abort`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

. # Run task
task_object$run()

Then abort task
task_object$abort()

End(Not run)

--
Method `Task$clone_task`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Clone task object
task_object$clone_task()

End(Not run)

--
Method `Task$get_execution_details`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Task 169

Get task execution details
task_object$get_execution_details()

End(Not run)

--
Method `Task$list_batch_children`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List batch children of a task
task_object$list_batch_children()

End(Not run)

--
Method `Task$delete`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete task
task_object$delete()

End(Not run)

--
Method `Task$rerun`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,

170 Tasks

href = x$href,
auth = auth,
response = attr(x, "response")
)

Rerun task
task_object$rerun()

End(Not run)

--
Method `Task$update`
--

Not run:
x is API response when task is requested
task_object <- Task$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Update task
task_object$update(name = new_name)

End(Not run)

Tasks R6 Class representing tasks endpoints

Description

R6 Class representing tasks resource endpoints.

Super class

sevenbridges2::Resource -> Tasks

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Tasks$new()

Tasks 171

• Tasks$query()

• Tasks$get()

• Tasks$delete()

• Tasks$create()

• Tasks$bulk_get()

• Tasks$clone()

Method new(): Create new Tasks resource object.

Usage:
Tasks$new(...)

Arguments:
... Other response arguments.

Method query(): This call lists all tasks you can access.

Read more about how to use query parameters properly here.

Usage:
Tasks$query(
status = NULL,
parent = NULL,
project = NULL,
created_from = NULL,
created_to = NULL,
started_from = NULL,
started_to = NULL,
ended_from = NULL,
ended_to = NULL,
order_by = c("created_time", "start_time", "name", "end_time", "created_by"),
order = c("asc", "desc"),
origin_id = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
status You can filter the returned tasks by their status. Set the value of status to one of the

following values: QUEUED, DRAFT, RUNNING, COMPLETED, ABORTED, FAILED.
parent Provide the task ID or Task object of the parent task to return all child tasks. A parent

task is a task that specifies criteria by which to batch its inputs into a series of further sub-
tasks, called child tasks. See the documentation on batching tasks for more details on how
to run tasks in batches.

project Provide the project ID or Project object you wish to list the tasks from.
created_from Enter the starting date string for querying tasks created on the specified date and

onwards.
created_to Enter the ending date string for querying tasks created until the specified date. You

can use it in combination with created_from to specify a time interval.

https://docs.sevenbridges.com/reference/list-tasks-you-can-access
https://docs.sevenbridges.com/docs/about-batch-analyses

172 Tasks

started_from Enter the starting date string for querying tasks started on the specified date and
onwards.

started_to Enter the ending date string for querying tasks started until the specified date.
ended_from Enter the starting date string for querying tasks that ended on a specified date.
ended_to Enter the ending date string for querying tasks that ended until a specified date.
order_by Order returned results by the specified field. Allowed values:

created_time, start_time, name, end_time and created_by.
Sorting can only be done by one column. The default value is created_time.

order Sort results in ascending or descending order by specifying asc or desc, respectively.
Only taken into account if order_by is explicitly specified. The default value is asc.

origin_id Enter an automation run ID to list all tasks created from the specified automation
run.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection of Task objects.

Method get(): This call returns details of the specified task. The task is referred to by its ID,
which you can obtain by making the call to list all tasks you can access. The task details include
its creator, its start and end time, the number of jobs completed in it, and its input and output files.
You can also see the status of the task.

Usage:
Tasks$get(id, ...)

Arguments:

id The ID of the task you are querying.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Method delete(): Tasks are identified by their IDs, which can be obtained using Tasks$query()
to list tasks or Tasks$get() to retrieve a single task.

Usage:
Tasks$delete(task, ...)

Arguments:

task Task object or task ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Method create(): This call creates a new task. You can create either a single task or a batch
task by using the app’s default batching, override batching, or disable batching completely. A
parent task is a task that specifies criteria by which to batch its inputs into a series of further
sub-tasks, called child tasks. the documentation on batching tasks for more details on batching
criteria.

https://docs.sevenbridges.com/docs/about-batch-analyses

Tasks 173

Usage:
Tasks$create(
project,
app,
revision = NULL,
name = NULL,
description = NULL,
execution_settings = NULL,
inputs = NULL,
output_location = NULL,
batch = NULL,
batch_input = NULL,
batch_by = NULL,
use_interruptible_instances = NULL,
action = NULL,
...

)

Arguments:
project The ID of a project or a Project object where you want to create the task in.
app The ID of an app or an App object you want to run. Recall that apps are specified by their

projects, in the form <project_id>/<app_name>.
revision The app revision (version) number.
name The name of the task.
description An optional description of the task.
execution_settings Named list with detailed task execution parameters. Detailed task exe-

cution parameters:
• instance_type: Possible value is the specific instance type, e.g. "instance_type" =
"c4.2xlarge;ebs-gp2;2000";

• max_parallel_instances: Maximum number of instances running at the same time.
Takes any integer value equal to or greater than 1, e.g. "max_parallel_instances" =
2.;

• use_memoization: Set to FALSE by default. Set to TRUE to enable memoization;
• use_elastic_disk: Set to TRUE to enable Elastic Disk.
Here is an example:
execution_settings <- list(
"instance_type" = "c4.2xlarge;ebs-gp2;2000",
"max_parallel_instances" = 2,
"use_memoization" = TRUE,
"use_elastic_disk" = TRUE
)

inputs List of objects. See the section on specifying task inputs for information on creating
task input objects. Here is an example with various input types:
inputs <- list(
"input_file"= "<file_id/file_object>",
"input_directory" = "<folder_id/folder_object>",
"input_array_string" = list("<string_elem_1>", "<string_elem_2>"),

https://docs.sevenbridges.com/docs/app-versions
https://docs.sevenbridges.com/docs/about-memoization
https://docs.sevenbridges.com/page/elastic-disk
https://docs.sevenbridges.com/docs/the-api#section-inputs

174 Tasks

"input_boolean" = TRUE,
"input_double" = 54.6,
"input_enum" = "enum_1",
"input_float" = 11.2,
"input_integer" = "asdf",
"input_long" = 4212,
"input_string" = "test_string",
"input_record" = list(
"input_record_field_file" = "<file_id/file_object>",
"input_record_field_integer" = 42
)

)

output_location The output location list allows you to define the exact location where your
task outputs will be stored. The location can either be defined for the entire project using the
main_location parameter, or individually per each output node, by setting the nodes_override
parameter to true and defining individual output node locations within nodes_location. See
below for more details.
• main_location - Defines the output location for all output nodes in the task. Can be a

string path within the project in which the task is created, for example
/Analysis/<task_id>_<task_name>/
or a path on an attached volume, such as
volumes://volume_name/<project_id>/html.
Parts of the path enclosed in angle brackets <> are tokens that are dynamically replaced
with corresponding values during task execution.

• main_location_alias: The string location (path) in the project that will point to the
actual location where the outputs are stored. Used if main_location is defined as a volume
path (starting with volumes://), to provide an easy way of accessing output data directly
from project files.

• nodes_override: Enables defining of output locations for output nodes individually
through nodes_location (see below). Set to TRUE to be able to define individual locations
per output node. Default: FALSE. Even if nodes_override is set to TRUE, it is not necessary
to define output locations for each of the output nodes individually. Data from those
output nodes that don’t have their locations explicitly defined through nodes_location is
either placed in main_location (if defined) or at the project files root if a main output
location is not defined for the task.

• nodes_location: List of output paths for individual task output nodes in the following
format for each output node:
<output-node-id> = list(
"output_location" = "<output-path>",
"output_location_alias" = "<alias-path>"
)
Example:
b64html = list(
"output_location" = "volumes://outputs/tasks/mar-19",
"output_location_alias" = "/rfranklin/tasks/picard"

)

In the example above, b64html is the ID of the output node for
which you want to define the output location, while the parameters

Tasks 175

are defined as follows:

– output_location - Can be a path within the project in which the task is created,
for example /Analysis/<task_id>_<task_name>/ or a path on an attached volume,
such as volumes://volume_name/<project_id>/html. Also accepts tokens.

– output_location_alias - The location (path) in the project that will point to the ex-
act location where the output is stored. Used if output_location is defined as a volume
path (starting with volumes://).

batch This is set to FALSE by default. Set to TRUE to create a batch task and specify the
batch_input and batch-by criteria as described below.

batch_input The ID of the input on which you wish to batch. You would typically batch on
the input consisting of a list of files. If this parameter is omitted, the default batching criteria
defined for the app will be used.

batch_by Batching criteria in form of list. For example:
batch_by = list(
type = "CRITERIA",
criteria = list("metadata.condition")

)

use_interruptible_instances This field can be TRUE or FALSE. Set this field to TRUE to
allow the use of spot instances.

action If set to run, the task will be run immediately upon creation.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Task object.

Method bulk_get(): This call returns statistics for all specified tasks.

Usage:
Tasks$bulk_get(tasks)

Arguments:
tasks A list of Task objects or list of strings (IDs) of the tasks you are requesting the statistics

for.

Returns: Collection (list of Task objects).

Examples:
\dontrun{
Get details of multiple tasks
a$tasks$bulk_get(

tasks = list("task_1_ID", "task_2_ID")
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Tasks$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

https://docs.sevenbridges.com/docs/about-spot-instances

176 Team

Examples

--
Method `Tasks$bulk_get`
--

Not run:
Get details of multiple tasks
a$tasks$bulk_get(

tasks = list("task_1_ID", "task_2_ID")
)

End(Not run)

Team R6 Class representing a Team

Description

R6 Class representing a central resource for managing teams.

Super class

sevenbridges2::Item -> Team

Public fields

URL List of URL endpoints for this resource.

id The ID of the team.

name Team’s name.

Methods

Public methods:
• Team$new()

• Team$print()

• Team$reload()

• Team$list_members()

• Team$add_member()

• Team$remove_member()

• Team$rename()

• Team$delete()

• Team$clone()

Method new(): Create a new Team object.

Usage:

Team 177

Team$new(res = NA, ...)

Arguments:
res Response containing the Team object information.
... Other response arguments.

Method print(): Print method for Team class.

Usage:
Team$print()

Examples:
\dontrun{
team_object <- Team$new(
res = x,

href = x$href,
auth = auth,
response = attr(x, "response")
)
team_object$print()

}

Method reload(): Reload Team object information.

Usage:
Team$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Team object.

Examples:
\dontrun{
team_object <- Team$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
team_object$reload()

}

Method list_members(): This call retrieves a list of all team members within a specified team.
Each member’s username will be returned.

Usage:
Team$list_members(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

178 Team

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: A Collection of User objects.

Examples:

\dontrun{
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Retrieve a list of all team members
my_team$list_members()

}

Method add_member(): This call adds a division member to the specified team. This action
requires ADMIN privileges.

Usage:
Team$add_member(user)

Arguments:

user User ID of the division member you are adding to the team using the following format:
division_id/username. Alternatively, a User object can be provided.

Examples:

\dontrun{
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Add new member to the team
my_team$add_member(user = "user-id")

}

Method remove_member(): This call removes a member from a team. By removing a member,
you remove the user’s membership to the team, but do not remove their account from the division.
This action requires ADMIN privileges.

Usage:
Team$remove_member(user)

Arguments:

user The Seven Bridges Platform username of the user to be removed, specified in the format
division-name/username, or an object of class User that contains the username.

Examples:

Team 179

\dontrun{
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Remove a member from the team
my_team$remove_member(user = "user-id")

}

Method rename(): This call renames the specified team. This action requires ADMIN privileges.

Usage:

Team$rename(name = NULL)

Arguments:

name The new name for the team.

Examples:

\dontrun{
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Rename the team
my_team$rename(name = "new-team-name")

}

Method delete(): This call deletes a team. By deleting a team, you remove the users’ member-
ship to the team, but do not remove their accounts from the division. This action requires ADMIN
privileges.

Usage:

Team$delete()

Examples:

\dontrun{
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Delete a team
my_team$delete()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:

Team$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

180 Team

Examples

--
Method `Team$print`
--

Not run:
team_object <- Team$new(
res = x,

href = x$href,
auth = auth,
response = attr(x, "response")
)
team_object$print()

End(Not run)

--
Method `Team$reload`
--

Not run:
team_object <- Team$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)
team_object$reload()

End(Not run)

--
Method `Team$list_members`
--

Not run:
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Retrieve a list of all team members
my_team$list_members()

End(Not run)

--
Method `Team$add_member`
--

Not run:
Retrieve details of a specified team

Teams 181

my_team <- a$teams$get(id = "team-id")

Add new member to the team
my_team$add_member(user = "user-id")

End(Not run)

--
Method `Team$remove_member`
--

Not run:
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Remove a member from the team
my_team$remove_member(user = "user-id")

End(Not run)

--
Method `Team$rename`
--

Not run:
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Rename the team
my_team$rename(name = "new-team-name")

End(Not run)

--
Method `Team$delete`
--

Not run:
Retrieve details of a specified team
my_team <- a$teams$get(id = "team-id")

Delete a team
my_team$delete()

End(Not run)

Teams R6 Class representing teams endpoints

Description

R6 Class representing teams resource endpoints.

182 Teams

Super class

sevenbridges2::Resource -> Teams

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Teams$new()

• Teams$query()

• Teams$get()

• Teams$create()

• Teams$delete()

• Teams$clone()

Method new(): Create new Teams resource object.

Usage:
Teams$new(...)

Arguments:

... Other response arguments.

Method query(): This call retrieves a list of all teams in a division that you are a member of.
Each team’s ID and name will be returned.

Usage:
Teams$query(division, list_all = FALSE, ...)

Arguments:

division The string ID of the division or Division object you are querying.
list_all Boolean. Set this field to TRUE if you want to list all teams within the division

(regardless of whether you are a member of a team or not). Default value is FALSE.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: A Collection of Team objects.

Examples:

\dontrun{
Retrieve a list of all teams within the division regardless of
whether you are a member of a team or not
a$teams$query(division = "division-id", list_all = TRUE)

}

Method get(): This call returns the details of a specified team. You can only get details of a
team you are a member of.

Usage:

Teams 183

Teams$get(id, ...)

Arguments:
id The ID of the team you are querying. The function also accepts a Team object and extracts

the ID.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Team object.

Examples:
\dontrun{
Retrieve details of a specified team
a$teams$get(id = "team-id")

}

Method create(): This call creates a new team within a specified division.

Usage:
Teams$create(division, name)

Arguments:
division The string ID of the division or Division object where you want to create a team.
name Enter the name for the new team.

Returns: A Team object.

Examples:
\dontrun{
Create new team
a$teams$create(division = "division-id", name = "my-new-team")

}

Method delete(): This call deletes a team. By deleting a team, you remove the users’ mem-
bership to the team, but do not remove their accounts from the division.

Usage:
Teams$delete(team, ...)

Arguments:
team The team ID or Team object that you want to delete.
... Other arguments that can be passed to core api() function.

Examples:
\dontrun{
Delete a team
a$teams$delete(team = "team-id")

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Teams$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

184 Upload

Examples

--
Method `Teams$query`
--

Not run:
Retrieve a list of all teams within the division regardless of
whether you are a member of a team or not
a$teams$query(division = "division-id", list_all = TRUE)

End(Not run)

--
Method `Teams$get`
--

Not run:
Retrieve details of a specified team
a$teams$get(id = "team-id")

End(Not run)

--
Method `Teams$create`
--

Not run:
Create new team
a$teams$create(division = "division-id", name = "my-new-team")

End(Not run)

--
Method `Teams$delete`
--

Not run:
Delete a team
a$teams$delete(team = "team-id")

End(Not run)

Upload R6 Class representing an Upload job

Description

R6 Class representing a resource for managing files’ uploads.

Upload 185

Public fields

URL List of URL endpoints for this resource.

upload_id Upload ID received after upload initialization.

path Relative or absolute path to the file on the local disk.

project Project’s identifier (character).

parent The ID of the folder to which the item is being uploaded. Should not be used together with
’project’.

filename File name. By default it will be the same as the name of the file you want to upload.
However, it can be changed to new name.

overwrite If TRUE will overwrite file on the server.

file_size File size.

part_size Size of part in bytes.

part_length Number of parts to upload.

parts List of parts to be uploaded (class Part).

initialized If TRUE, upload has been initialized.

auth Authentication object.

Methods

Public methods:
• Upload$new()

• Upload$print()

• Upload$init()

• Upload$info()

• Upload$start()

• Upload$abort()

• Upload$clone()

Method new(): Create a new Upload object.

Usage:
Upload$new(
path = NA,
project = NA,
parent = NA,
filename = NA,
overwrite = FALSE,
file_size = NA,
part_size = getOption("sevenbridges2")$RECOMMENDED_PART_SIZE,
initialized = FALSE,
auth = NA

)

Arguments:

186 Upload

path Path to the file on the local disc.
project Project’s identifier (character).
parent The ID of the folder to which the item is being uploaded.
filename New file name. Optional.
overwrite If true will overwrite file on the server.
file_size File size.
part_size Size of a single part in bytes.
initialized If TRUE, upload has been initialized.
auth Seven Bridges Authentication object.

Method print(): Print method for Upload class.

Usage:
Upload$print()

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Print the upload object information
upload_object$print(name = name)

}

Method init(): Initialize a new multipart file upload.

Usage:
Upload$init()

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Initialize multipart file upload object
upload_object$init()

}

Method info(): Get the details of an active multipart upload.

Usage:
Upload$info(list_parts = FALSE)

Arguments:

Upload 187

list_parts If TRUE, also return a list of parts that have been reported as completed for this
multipart upload. Please bear in mind that the output could be heavy for printing if there
are lot of parts.

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Get upload job status information
upload_object$info()

}

Method start(): Start the file upload

Usage:
Upload$start()

Returns: File object.

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

Initialize multipart file upload object
upload_object$init()

Start upload process
upload_object$start()

}

Method abort(): Abort the multipart upload This call aborts an ongoing upload.

Usage:
Upload$abort()

Examples:
\dontrun{
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth

)

188 Upload

Abort upload process
upload_object$abort()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Upload$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Upload$print`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Print the upload object information
upload_object$print(name = name)

End(Not run)

--
Method `Upload$init`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Initialize multipart file upload object
upload_object$init()

End(Not run)

--
Method `Upload$info`
--

Not run:
upload_object <- Upload$new(

User 189

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Get upload job status information
upload_object$info()

End(Not run)

--
Method `Upload$start`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Initialize multipart file upload object
upload_object$init()

Start upload process
upload_object$start()

End(Not run)

--
Method `Upload$abort`
--

Not run:
upload_object <- Upload$new(

path = "path/to/my/file.txt",
project = project_object,
auth = auth
)

Abort upload process
upload_object$abort()

End(Not run)

User R6 Class Representing a platform User

Description

User object containing user information.

190 User

Details

This is the main object for Users.

Super class

sevenbridges2::Item -> User

Public fields

URL List of URL endpoints for this resource.

username User name.

email User’s email address.

first_name User’s first name.

last_name User’s last name.

affiliation The company or the institute the user is affiliated with.

phone User’s phone number.

address User’s residential address.

city User’s city of residence.

state User’s state of residence.

country User’s country of residence.

zip_code Zip code for the user’s residence.

role User’s role.

tags Platform tags associated with the user.

Methods

Public methods:
• User$new()

• User$print()

• User$reload()

• User$clone()

Method new(): Create a new User object.

Usage:
User$new(res = NA, ...)

Arguments:

res Response containing User object information.
... Other response arguments.

Method print(): Print user information as bullet list.

Usage:
User$print()

Volume 191

Method reload(): Reload User object information.

Usage:
User$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: User object.

Method clone(): The objects of this class are cloneable with this method.

Usage:
User$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Volume R6 Class representing a Volume

Description

R6 Class representing a resource for managing volumes.

Super class

sevenbridges2::Item -> Volume

Public fields

URL List of URL endpoints for this resource.

id Volume ID, constructed from {division}/{volume_name} or
{volume_owner}/{volume_name}.

name The name of the volume. It must be unique from all other volumes for this user. Required if
from_path parameter is not provided.

description The description of the volume.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only (RO)
operations. The access mode is consulted independently of the credentials granted to Seven
Bridges when the volume was created, so it is possible to use a read-write credentials to
register both read-write and read-only volumes using it. Default: "RW".

service This object in form of string more closely describes the mapping of the volume to the
cloud service where the data is stored.

created_on The date and time this volume was created.

modified_on The date and time this volume was last modified.

active If a volume is deactivated, this field will be set to FALSE.

192 Volume

Methods

Public methods:
• Volume$new()

• Volume$print()

• Volume$reload()

• Volume$update()

• Volume$deactivate()

• Volume$reactivate()

• Volume$delete()

• Volume$list_contents()

• Volume$get_file()

• Volume$list_members()

• Volume$add_member()

• Volume$add_member_team()

• Volume$add_member_division()

• Volume$remove_member()

• Volume$get_member()

• Volume$modify_member_permissions()

• Volume$list_imports()

• Volume$list_exports()

• Volume$clone()

Method new(): Create a new Volume object.

Usage:
Volume$new(res = NA, ...)

Arguments:
res Response containing Volume object info.
... Other response arguments.

Method print(): Print method for Volume class.

Usage:
Volume$print()

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print volume object

Volume 193

volume_object$print()
}

Method reload(): Reload Volume object information.

Usage:
Volume$reload(...)

Arguments:

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Volume object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload volume object
volume_object$reload()

}

Method update(): Update a volume. This function updates the details of a specific volume.

Usage:
Volume$update(description = NULL, access_mode = NULL, service = NULL)

Arguments:

description The new description of the volume.
access_mode Signifies whether this volume should be used for read-write (RW) or read-only

(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

service This object in form of string more closely describes the mapping of the volume to the
cloud service where the data is stored.

Returns: Volume object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,

194 Volume

response = attr(x, "response")
)

Update volume object
volume_object$update(description = description)

}

Method deactivate(): Deactivate volume. Once deactivated, you cannot import from, export
to, or browse within a volume. As such, the content of the files imported from this volume will no
longer be accessible on the Platform. However, you can update the volume and manage members.
Note that you cannot deactivate the volume if you have running imports or exports unless you
force the operation using the query parameter force=TRUE. Note that to delete a volume, first you
must deactivate it and delete all files which have been imported from the volume to the Platform.

Usage:
Volume$deactivate(...)

Arguments:

... Other query parameters or arguments that can be passed to core api() function like ’force’.
Use it within query parameter, like query = list(force = TRUE).

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Deactivate volume
volume_object$deactivate()

}

Method reactivate(): Reactivate volume. This function reactivates the previously deactivated
volume by updating the active field of the volume to TRUE.

Usage:
Volume$reactivate(...)

Arguments:

... Other query parameters or arguments that can be passed to core api() function like ’force’.
Use it within query parameter, like query = list(force = TRUE).

Returns: Volume object.

Examples:

\dontrun{
x is API response when volume is requested

Volume 195

volume_object <- Volume$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Deactivate volume
volume_object$deactivate()

Reactivate volume
volume_object$reactivate()

}

Method delete(): Delete volume. This call deletes a volume you’ve created to refer to storage
on Amazon Web Services, Google Cloud Storage, Azure or Ali cloud. To be able to delete a
volume, you first need to deactivate it and then delete all files on the Platform that were previously
imported from the volume.

Usage:
Volume$delete()

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Delete volume
volume_object$delete()

}

Method list_contents(): List volume contents. This call lists the contents of a specific
volume.

Usage:
Volume$list_contents(
prefix = NULL,
limit = getOption("sevenbridges2")$limit,
link = NULL,
continuation_token = NULL,
...

)

Arguments:

196 Volume

prefix This is parent parameter in volume context. If specified, the content of the parent
directory on the current volume is listed.

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

link Link to use in the next chunk of results. Contains limit and continuation_token. If pro-
vided it will overwrite other arguments’ values passed.

continuation_token Continuation token received to use for next chunk of results. Behaves
similarly like offset parameter.

... Other arguments that can be passed to core api() function like ’fields’ for example. With
fields parameter you can specify a subset of fields to include in the response. You can use:
href, location, volume, type, metadata, _all. Default: _all.

Returns: VolumeContentCollection object containing list of VolumeFile and VolumePrefix
objects.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume contents
volume_object$list_contents()

}

Method get_file(): Get volume file information. This function returns the specific Volume
File.

Usage:
Volume$get_file(location = NULL, link = NULL, ...)

Arguments:
location Volume file id, which is represented as file location.
link Link to the file resource received from listing volume’s contents. Cannot be used together

with location.
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: VolumeFile object.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,

Volume 197

auth = auth,
response = attr(x, "response")

)

Get volume file
volume_object$get_file(location = location)

}

Method list_members(): List members of a volume. This function returns the members of a
specific volume.

Usage:
Volume$list_members(
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:
limit The maximum number of collection items to return for a single request. Minimum value

is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other parameters that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing Member objects.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume members
volume_object$list_members()

}

Method add_member(): Add member to a volume. This function adds members to the specified
volume.

Usage:
Volume$add_member(
user,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

198 Volume

Arguments:

user The Seven Bridges Platform username of the person you want to add to the volume or
object of class Member containing user’s username.

permissions List of permissions granted to the user being added. Permissions include listing
the contents of a volume, importing files from the volume to the Platform, exporting files
from the Platform to the volume, and admin privileges.
It can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Example:

permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Member object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add volume member
volume_object$add_member(

user = user,
permissions = list(read = TRUE, copy = FALSE)

)
}

Method add_member_team(): Add a specific team as a member to a volume. Only Enterprise
users that are part of some division can add teams to a volume created within that division.

Usage:
Volume$add_member_team(
team,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

Arguments:

team The Seven Bridges Platform ID of a team you want to add to the volume or object of class
Team containing team’s ID. Team must be created within a division where the volume is
created too.

permissions List of permissions granted to the team being added. Permissions include listing
the contents of a volume, importing files from the volume to the Platform, exporting files
from the Platform to the volume, and admin privileges.
It can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the team, or FALSE if it’s not. Example:

Volume 199

permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Member object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Add volume member
volume_object$add_member_team(

team = <team-id>,
permissions = list(read = TRUE, copy = FALSE)

)
}

Method add_member_division(): Add a specific division as a member to a volume. Only
Enterprise users (with Enterprise accounts) can add divisions to a volume that is created with that
Enterprise account (not within other divisions).

Usage:
Volume$add_member_division(
division,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

Arguments:

division The Seven Bridges Platform ID of a division you want to add to the volume or object
of class Division containing division’s ID.

permissions List of permissions granted to the division being added. Permissions include
listing the contents of a volume, importing files from the volume to the Platform, exporting
files from the Platform to the volume, and admin privileges.
It can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the division, or FALSE if it’s not. Example:

permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Member object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,

200 Volume

href = x$href,
auth = auth,
response = attr(x, "response")

)

Add volume member
volume_object$add_member_division(

division = <division-id>,
permissions = list(read = TRUE, copy = FALSE)

)
}

Method remove_member(): Remove member from a volume. This function removes members
from the specified volume.

Usage:
Volume$remove_member(member)

Arguments:
member The Seven Bridges Platform username of the person you want to remove from the

volume, or team ID or division ID (for Enterprise users only) or object of class Member
containing member’s ID.

Examples:
\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Remove volume member
volume_object$remove_member(member = member)

}

Method get_member(): Get member’s details. This function returns member’s information.

Usage:
Volume$get_member(member, ...)

Arguments:
member The Seven Bridges Platform username of the person you want to get information about,

or team ID or division ID (for Enterprise users only) or object of class Member containing
member’s ID.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Member object.

Examples:

Volume 201

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Get volume member
volume_object$get_member(member = member)

}

Method modify_member_permissions(): Modify volume member’s permissions. This func-
tion modifies the permissions for a member of a specific volume. Note that this does not overwrite
all previously set permissions for the member.

Usage:
Volume$modify_member_permissions(
member,
permissions = list(read = TRUE, copy = FALSE, write = FALSE, admin = FALSE)

)

Arguments:

member The Seven Bridges Platform username of the person you want to modify permissions
for or team ID or division ID (for Enterprise users only) or object of class Member contain-
ing member’s ID.

permissions List of specific (or all) permissions you want to update for the member of the vol-
ume. Permissions include listing the contents of a volume, importing files from the volume
to the Platform, exporting files from the Platform to the volume, and admin privileges. It
can contain fields: ’read’, ’copy’, ’write’ and ’admin’ with logical fields - TRUE if certain
permission is allowed to the user, or FALSE if it’s not. Example:

permissions = list(read = TRUE, copy = TRUE, write = FALSE,
admin = FALSE)

Returns: Permission object.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Modify volume member permissions
volume_object$modify_member_permissions(

202 Volume

member = member,
permission = list(read = TRUE, copy = TRUE)

)
}

Method list_imports(): This call lists import jobs initiated by particular user from this vol-
ume.

Usage:
Volume$list_imports(
project = NULL,
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

project String project id or Project object. List all volume imports to this project. Optional.
state String. The state of the import job. Possible values are:

• PENDING: the import is queued;
• RUNNING: the import is running;
• COMPLETED: the import has completed successfully;
• FAILED: the import has failed.
Example: state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing list of Import job objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume imports
volume_object$list_imports(

project = project,
state = c("RUNNING", "FAILED")

Volume 203

)
}

Method list_exports(): This call lists export jobs initiated by a user into this volume. Note
that when you export a file from a project on the Platform into a volume, you write to your cloud
storage bucket.

Usage:
Volume$list_exports(
state = NULL,
limit = getOption("sevenbridges2")$limit,
offset = getOption("sevenbridges2")$offset,
...

)

Arguments:

state The state of the export job. Possible values are:
• PENDING: the export is queued;
• RUNNING: the export is running;
• COMPLETED: the export has completed successfully;
• FAILED: the export has failed.
Example: state = c("RUNNING", "FAILED")

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

offset The zero-based starting index in the entire collection of the first item to return. The
default value is 0. This is a pagination-specific attribute.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Collection containing list of Export job objects.

Examples:

\dontrun{
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume exports
volume_object$list_exports(state = c("RUNNING", "FAILED"))

}

Method clone(): The objects of this class are cloneable with this method.

Usage:

204 Volume

Volume$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Volume$print`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print volume object
volume_object$print()

End(Not run)

--
Method `Volume$reload`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume object
volume_object$reload()

End(Not run)

--
Method `Volume$update`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,

Volume 205

href = x$href,
auth = auth,
response = attr(x, "response")
)

Update volume object
volume_object$update(description = description)

End(Not run)

--
Method `Volume$deactivate`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Deactivate volume
volume_object$deactivate()

End(Not run)

--
Method `Volume$reactivate`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Deactivate volume
volume_object$deactivate()

Reactivate volume
volume_object$reactivate()

End(Not run)

--

206 Volume

Method `Volume$delete`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Delete volume
volume_object$delete()

End(Not run)

--
Method `Volume$list_contents`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume contents
volume_object$list_contents()

End(Not run)

--
Method `Volume$get_file`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get volume file
volume_object$get_file(location = location)

Volume 207

End(Not run)

--
Method `Volume$list_members`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume members
volume_object$list_members()

End(Not run)

--
Method `Volume$add_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add volume member
volume_object$add_member(

user = user,
permissions = list(read = TRUE, copy = FALSE)

)

End(Not run)

--
Method `Volume$add_member_team`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,

208 Volume

auth = auth,
response = attr(x, "response")
)

Add volume member
volume_object$add_member_team(

team = <team-id>,
permissions = list(read = TRUE, copy = FALSE)

)

End(Not run)

--
Method `Volume$add_member_division`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Add volume member
volume_object$add_member_division(

division = <division-id>,
permissions = list(read = TRUE, copy = FALSE)

)

End(Not run)

--
Method `Volume$remove_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Remove volume member
volume_object$remove_member(member = member)

End(Not run)

Volume 209

--
Method `Volume$get_member`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Get volume member
volume_object$get_member(member = member)

End(Not run)

--
Method `Volume$modify_member_permissions`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Modify volume member permissions
volume_object$modify_member_permissions(

member = member,
permission = list(read = TRUE, copy = TRUE)

)

End(Not run)

--
Method `Volume$list_imports`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

210 VolumeContentCollection

)

List volume imports
volume_object$list_imports(

project = project,
state = c("RUNNING", "FAILED")

)

End(Not run)

--
Method `Volume$list_exports`
--

Not run:
x is API response when volume is requested
volume_object <- Volume$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume exports
volume_object$list_exports(state = c("RUNNING", "FAILED"))

End(Not run)

VolumeContentCollection

R6 Class representing a VolumeContentCollection

Description

R6 Class representing a resource for managing volume content collections.

Super class

sevenbridges2::Collection -> VolumeContentCollection

Public fields

prefixes Prefixes on the volume, returned in API response.

VolumeContentCollection 211

Methods

Public methods:
• VolumeContentCollection$new()

• VolumeContentCollection$print()

• VolumeContentCollection$next_page()

• VolumeContentCollection$prev_page()

• VolumeContentCollection$all()

• VolumeContentCollection$clone()

Method new(): Create new VolumeContentCollection object.

Usage:
VolumeContentCollection$new(res = NA, ...)

Arguments:

res Response containing VolumeContentCollection object fields.
... Other response arguments.

Method print(): Print method for VolumeContentCollection class.

Usage:
VolumeContentCollection$print(n = 10)

Arguments:

n Number of items to print in console.

Examples:

\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Print volume content collection object
vol_con_col_object$print()

}

Method next_page(): Return next page of results.

Usage:
VolumeContentCollection$next_page(...)

Arguments:

... Other arguments or query parameters that can be passed to the core api() function like
’advance_access’, ’fields’ etc.

212 VolumeContentCollection

Examples:

\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get next page of results
vol_con_col_object$next_page()

}

Method prev_page(): Return the previous page of results.

Usage:
VolumeContentCollection$prev_page()

Examples:

\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get previous page of results
vol_con_col_object$prev_page()

}

Method all(): Fetches all available items.

Usage:
VolumeContentCollection$all(...)

Arguments:

... Other arguments or query parameters that can be passed to the core api() function like
’advance_access’, ’fields’ etc.

Examples:

\dontrun{
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,

VolumeContentCollection 213

href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

)

Get all results
vol_con_col_object$all()

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumeContentCollection$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

--
Method `VolumeContentCollection$print`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Print volume content collection object
vol_con_col_object$print()

End(Not run)

--
Method `VolumeContentCollection$next_page`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")

214 VolumeFile

)

Get next page of results
vol_con_col_object$next_page()

End(Not run)

--
Method `VolumeContentCollection$prev_page`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Get previous page of results
vol_con_col_object$prev_page()

End(Not run)

--
Method `VolumeContentCollection$all`
--

Not run:
x is API response when volume content collection is requested
vol_con_col_object <- VolumeContentCollection$new(

res = x,
href = x$href,
links = x$links,
auth = auth,
response = attr(x, "response")
)

Get all results
vol_con_col_object$all()

End(Not run)

VolumeFile R6 Class representing a VolumeFile

VolumeFile 215

Description

R6 Class representing a resource for managing VolumeFile objects.

Super class

sevenbridges2::Item -> VolumeFile

Public fields

URL List of URL endpoints for this resource.

location File location on the volume.

type Type of storage (cloud provider). Can be one of: s3, gcs, azure, OSS.

volume Volume id.

metadata File metadata, if it exists.

Methods

Public methods:
• VolumeFile$new()

• VolumeFile$print()

• VolumeFile$reload()

• VolumeFile$import()

• VolumeFile$clone()

Method new(): Create a new VolumeFile object.

Usage:
VolumeFile$new(res = NA, ...)

Arguments:
res Response containing VolumeFile object info.
... Other response arguments.

Method print(): Print method for VolumeFile class.

Usage:
VolumeFile$print()

Examples:
\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Print volume file object

216 VolumeFile

volume_file_object$print()
}

Method reload(): Reload VolumeFile object information.

Usage:
VolumeFile$reload(...)

Arguments:
... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: A VolumeFile object.

Examples:
\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload volume file object
volume_file_object$reload()

}

Method import(): This call lets you queue a job to import this file or folder from a volume into
a project on the Platform.
Essentially, you are importing an item from your cloud storage provider (Amazon Web Services,
Google Cloud Storage, Azure or Ali Cloud) via the volume onto the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can
be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

Usage:
VolumeFile$import(
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
...

)

Arguments:
destination_project String destination project id or Project object. Not required, but either

destination_project or destination_parent directory must be provided.
destination_parent String folder id or File object (with type = 'FOLDER'). Not required, but

either destination_project or destination_parent directory must be provided.

VolumeFile 217

name The name of the alias to create. This name should be unique to the project.
If the name is already in use in the project, you should use the overwrite query parameter
in this call to force any item with that name to be deleted before the alias is created. If
name is omitted, the alias name will default to the last segment of the complete location
(including the prefix) on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in
file names are all alphanumeric and special characters except forward slash /, while folder
names can contain alphanumeric and special characters _, - and ..

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:

\dontrun{
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Import volume file object
volume_file_object$import(destination_project = destination_project)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumeFile$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `VolumeFile$print`
--

Not run:
x is API response when volume file is requested

218 VolumeFile

volume_file_object <- VolumeFile$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Print volume file object
volume_file_object$print()

End(Not run)

--
Method `VolumeFile$reload`
--

Not run:
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume file object
volume_file_object$reload()

End(Not run)

--
Method `VolumeFile$import`
--

Not run:
x is API response when volume file is requested
volume_file_object <- VolumeFile$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Import volume file object
volume_file_object$import(destination_project = destination_project)

End(Not run)

VolumePrefix 219

VolumePrefix R6 Class representing a VolumePrefix

Description

R6 Class representing a resource for managing VolumePrefix objects.

Super class

sevenbridges2::Item -> VolumePrefix

Public fields

URL List of URL endpoints for this resource.

prefix File/prefix name on the volume.

volume Volume id.

Methods

Public methods:
• VolumePrefix$new()

• VolumePrefix$print()

• VolumePrefix$reload()

• VolumePrefix$list_contents()

• VolumePrefix$import()

• VolumePrefix$clone()

Method new(): Create a new VolumePrefix object.

Usage:
VolumePrefix$new(res = NA, ...)

Arguments:

res Response containing VolumePrefix object information.
... Other response arguments.

Method print(): Print method for VolumePrefix class.

Usage:
VolumePrefix$print()

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,

220 VolumePrefix

auth = auth,
response = attr(x, "response")

)

Print the Volume Prefix object
volume_prefix_object$print()

}

Method reload(): Reload the VolumePrefix object information.

Usage:
VolumePrefix$reload()

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

Reload volume prefix object
volume_prefix_object$reload()

}

Method list_contents(): List the contents of a volume folder. This call lists the contents of a
specific volume folder.

Usage:
VolumePrefix$list_contents(
limit = getOption("sevenbridges2")$limit,
continuation_token = NULL,
...

)

Arguments:

limit The maximum number of collection items to return for a single request. Minimum value
is 1. The maximum value is 100 and the default value is 50. This is a pagination-specific
attribute.

continuation_token Continuation token received to use for next chunk of results. Behaves
similarly like offset parameter.

... Other arguments that can be passed to core api() function, like ’fields’ for example. With
fields parameter you can specify a subset of fields to include in the response. You can use:
href, location, volume, type, metadata, _all. Default: _all.

Returns: VolumeContentCollection object containing list of VolumeFile and VolumePrefix
objects.

VolumePrefix 221

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume prefix object contents
volume_prefix_object$list_contents()

}

Method import(): This call lets you queue a job to import this file or folder from a volume into
a project on the Platform.
Essentially, you are importing an item from your cloud storage provider (Amazon Web Services,
Google Cloud Storage, Azure or Ali Cloud) via the volume onto the Platform.
If successful, an alias will be created on the Platform. Aliases appear on the Platform and can
be copied, executed, and modified as such. They refer back to the respective item on the given
volume.

Usage:
VolumePrefix$import(
destination_project = NULL,
destination_parent = NULL,
name = NULL,
overwrite = FALSE,
autorename = FALSE,
preserve_folder_structure = NULL,
...

)

Arguments:

destination_project String destination project id or Project object. Not required, but either
destination_project or destination_parent directory must be provided.

destination_parent String folder id or File object (with type = 'FOLDER'). Not required, but
either destination_project or destination_parent directory must be provided.

name The name of the alias to create. This name should be unique to the project. If the name is
already in use in the project, you should use the overwrite query parameter in this call to
force any item with that name to be deleted before the alias is created. If name is omitted,
the alias name will default to the last segment of the complete location (including the prefix)
on the volume.

Segments are considered to be separated with forward slashes /. Allowed characters in file
names are all alphanumeric and special characters except forward slash (/), while folder
names can contain alphanumeric and special characters underscores (_), hyphens (-), and
dots (.).

222 VolumePrefix

overwrite Set to TRUE if you want to overwrite the item if another one with the same name
already exists at the destination. Bear in mind that if used with folders import, the folder’s
content (files with the same name) will be overwritten, not the whole folder.

autorename Set to TRUE if you want to automatically rename the item (by prefixing its name
with an underscore and number) if another one with the same name already exists at the des-
tination. Bear in mind that if used with folders import, the folder content will be renamed,
not the whole folder.

preserve_folder_structure Set to TRUE if you want to keep the exact source folder struc-
ture. The default value is TRUE if the item being imported is a folder. Should not be used
if you are importing a file. Bear in mind that if you use preserve_folder_structure =
FALSE, that the response will be the parent folder object containing imported files alongside
with other files if they exist.

... Other arguments that can be passed to core api() function like ’fields’, etc.

Returns: Import object.

Examples:

\dontrun{
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")

)

List volume prefix object contents
volume_prefix_object$import(destination_project = destination_project)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
VolumePrefix$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `VolumePrefix$print`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,

VolumePrefix 223

response = attr(x, "response")
)

Print the Volume Prefix object
volume_prefix_object$print()

End(Not run)

--
Method `VolumePrefix$reload`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

Reload volume prefix object
volume_prefix_object$reload()

End(Not run)

--
Method `VolumePrefix$list_contents`
--

Not run:
x is API response when volume prefix is requested
volume_prefix_object <- VolumePrefix$new(

res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume prefix object contents
volume_prefix_object$list_contents()

End(Not run)

--
Method `VolumePrefix$import`
--

Not run:
x is API response when volume prefix is requested

224 Volumes

volume_prefix_object <- VolumePrefix$new(
res = x,
href = x$href,
auth = auth,
response = attr(x, "response")
)

List volume prefix object contents
volume_prefix_object$import(destination_project = destination_project)

End(Not run)

Volumes R6 Class representing volumes endpoints

Description

R6 Class representing volumes resource endpoints.

Super class

sevenbridges2::Resource -> Volumes

Public fields

URL List of URL endpoints for this resource.

Methods

Public methods:
• Volumes$new()

• Volumes$query()

• Volumes$get()

• Volumes$delete()

• Volumes$create_s3_using_iam_user()

• Volumes$create_s3_using_iam_role()

• Volumes$create_google_using_iam_user()

• Volumes$create_google_using_iam_role()

• Volumes$create_azure()

• Volumes$create_ali_oss()

• Volumes$clone()

Method new(): Create a new Volumes object.

Usage:
Volumes$new(...)

Volumes 225

Arguments:

... Other response arguments.

Method query(): This call lists all the volumes you’ve registered.

Usage:
Volumes$query(...)

Arguments:

... Other arguments that can be passed to core api() function like ’limit’, ’offset’, ’fields’,
etc.

Returns: Collection of Volume objects.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Query volumes
volumes_object$query()

}

Method get(): This call returns details of the specified volume. The volume is referred to by
its ID, which you can obtain by making the call to list all the volumes you’ve registered.

Usage:
Volumes$get(id)

Arguments:

id The Volume ID consists of volume owner’s name (for enterprise users) and volume name
in form {volume_owner}/{volume_name}, or division name (if user belongs to some divi-
sion) and volume name in form {division}/{volume_name}. You can also get the Volume
ID for a volume by making the call to list all volumes you’ve registered.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$get(id = id)

}

Method delete(): This call deletes a volume you’ve created to refer to storage on Amazon Web
Services or Google Cloud Storage. To be able to delete a volume, you first need to deactivate it
and then delete all files on the Platform that were previously imported from the volume.
Volumes are specified by their IDs, which you can obtain by using Volumes$query() to list files
or by getting a single file using Volumes$get().

Usage:

226 Volumes

Volumes$delete(volume, ...)

Arguments:
volume Volume object or volume ID.
... Other arguments that can be passed to core api() function as ’fields’, etc.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$delete(volume = volume)

}

Method create_s3_using_iam_user(): Create new volume to connect to your s3 bucket on
AWS cloud. Volumes authorize the Platform to access and query objects on a specified cloud
storage (Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This
function uses IAM User credentials to connect to your s3 bucket.

Read more about volume creation in our API documentation.

Usage:
Volumes$create_s3_using_iam_user(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
endpoint = "s3.amazonaws.com",
access_key_id = NULL,
secret_access_key = NULL,
properties = list(sse_algorithm = "AES256"),
from_path = NULL

)

Arguments:
name The name of the volume. It must be unique from all other volumes for this user. Required

if from_path parameter is not provided.
access_mode Signifies whether this volume should be used for read-write (RW) or read-only

(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the AWS S3 bucket you wish to register as a volume.
Required if from_path parameter is not provided.

https://docs.sevenbridges.com/reference/create-a-volume-v2

Volumes 227

endpoint AWS API endpoint to use when accessing this bucket. Default: s3.amazonaws.com.
access_key_id AWS access key ID in form of string of the IAM user shared with Seven

Bridges to access this bucket. Required if from_path parameter is not provided.
secret_access_key AWS secret access key in form of string of the IAM user shared with

Seven Bridges to access this bucket. Required if from_path parameter is not provided.
properties Named list containing the properties of a specific service. These values set the

defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object. For AWS S3, there are:
• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-

ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM User)
aws_iam_user_volume <- volumes_object$create_s3_using_iam_user(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM User Vol",
access_key_id = "<access-key>",
secret_access_key = "<secret-access-key>"

)
}

Method create_s3_using_iam_role(): Create new volume to connect to your s3 bucket on
AWS cloud. Volumes authorize the Platform to access and query objects on a specified cloud
storage (Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This
function uses IAM Role credentials to connect to your s3 bucket. In order to use these credentials,
user must have specific user tag enabled by Support team.

Read more about volume creation in our API documentation.

Usage:
Volumes$create_s3_using_iam_role(
name = NULL,
access_mode = "RW",

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl
https://docs.sevenbridges.com/reference/create-a-volume-v2

228 Volumes

description = NULL,
prefix = NULL,
bucket = NULL,
endpoint = "s3.amazonaws.com",
role_arn = NULL,
external_id = NULL,
properties = list(sse_algorithm = "AES256"),
from_path = NULL

)

Arguments:

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only
(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the AWS S3 bucket you wish to register as a volume.
Required if from_path parameter is not provided.

endpoint AWS API endpoint to use when accessing this bucket. Default: s3.amazonaws.com.
role_arn The ARN (Amazon Resource Name) of your role that is used to connect your S3

bucket. Required if from_path parameter is not provided.
external_id Optional information that you can use in an IAM role trust policy to designate

who can assume the role. Must be provided if it is configured in your role trust policy on
AWS. Required if from_path parameter is not provided.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object. For AWS S3, there are:
• sse_algorithm - S3 server-side encryption to use when exporting to this bucket. Sup-

ported values: AES256 (SSE-S3 encryption), aws:kms, null (no server-side encryption).
Default: AES256.

• sse_aws_kms_key_id: Applies to type: s3. If AWS KMS encryption is used, this should
be set to the required KMS key. If not set and aws:kms is set as sse_algorithm, default
KMS key is used.

• aws_canned_acl: S3 canned ACL to apply on the object on during export. Supported
values: any one of S3 canned ACLs; null (do not apply canned ACLs). Default: null.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html#canned-acl

Volumes 229

Create new AWS Volume (IAM Role)
aws_iam_role_volume <- volumes_object$create_s3_using_iam_role(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM Role Vol",
role_arn = "<role-arn-key>",
external_id = "<external-id>"

)
}

Method create_google_using_iam_user(): Create new volume to connect to your bucket
on GCS. Volumes authorize the Platform to access and query objects on a specified cloud storage
(Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This function
uses IAM User credentials to connect with your GCS bucket.

Read more about volume creations in our API documentation.

Usage:
Volumes$create_google_using_iam_user(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
root_url = "https://www.googleapis.com",
client_email = NULL,
private_key = NULL,
properties = NULL,
from_path = NULL

)

Arguments:

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only
(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the GCS bucket you wish to register as a volume. Required if from_path
parameter is not provided.

root_url Google Cloud Storage API endpoint for accessing this bucket.
Default: https://www.googleapis.com.

https://docs.sevenbridges.com/reference/create-a-volume-v2

230 Volumes

client_email The client email address for the Google Cloud service account to use for op-
erations on this bucket. This can be found in the JSON containing your service account
credentials. Required if from_path parameter is not provided.

private_key Google Cloud Platform private key. Required if from_path parameter is not
provided.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:
\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_user_volume <- volumes_object$create_google_using_iam_user(

name = "my_new_gc_user_volume",
access_mode = "RW",
bucket = "<bucket-name>",
description = "GC IAM User volume",
client_email = "<client_email>",
private_key = "<private_key-string>"

)
}

Method create_google_using_iam_role(): Create new volume to connect to your bucket
on GCS. Volumes authorize the Platform to access and query objects on a specified cloud storage
(Amazon Web Services, Google Cloud Storage, Azure or Ali cloud) on your behalf. This function
uses IAM Role credentials to connect to your GCS bucket. In order to use these credentials, user
must have specific user tag enabled by Support team.

Read more about volume creations in our API documentation.

Usage:
Volumes$create_google_using_iam_role(
name = NULL,
access_mode = "RW",
description = NULL,
prefix = NULL,
bucket = NULL,
root_url = "https://www.googleapis.com",
configuration = NULL,
properties = NULL,
from_path = NULL

)

Arguments:

https://docs.sevenbridges.com/reference/create-a-volume-v2

Volumes 231

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

access_mode Signifies whether this volume should be used for read-write (RW) or read-only
(RO) operations. The access mode is consulted independently of the credentials granted to
Seven Bridges when the volume was created, so it is possible to use a read-write credentials
to register both read-write and read-only volumes using it. Default: "RW".

description An optional description of this volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

bucket The name of the GCS bucket you wish to register as a volume. Required if from_path
parameter is not provided.

root_url Google Cloud Storage API endpoint for accessing this bucket.
Default: https://www.googleapis.com.

configuration Connection configuration parameters in JSON format downloaded from the
Google Cloud Console once prerequisites have been set up. Could be provided as a named
list, or as path to the downloaded JSON file.

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

from_path Path to JSON configuration file containing all required information for registering
a volume. If provided, it will overwrite all previous parameters set.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_role_volume <- volumes_object$create_google_using_iam_role(

name = "my_new_gc_role_volume",
access_mode = "RO",
bucket = "<bucket-name>",
description = "GC IAM Role volume",
configuration = list(

type = "<type-name>",
audience = "<audience-link>",
subject_token_type = "<subject_token_type>",

service_account_impersonation_url = "<service_account_impersonation_url>",
token_url = "<token_url>",
credential_source = list(

environment_id = "<environment_id>",
region_url = "<region_url>",
url = "<url>",

regional_cred_verification_url = "<regional_cred_verification_url>"
)

)

232 Volumes

)
}

Method create_azure(): This call creates a new volume by attaching a Microsoft Azure
storage container to the Platform.

Usage:
Volumes$create_azure(
name = NULL,
description = NULL,
endpoint = NULL,
storage_account = NULL,
container = NULL,
prefix = NULL,
tenant_id = NULL,
client_id = NULL,
client_secret = NULL,
resource_id = NULL,
from_path = NULL

)

Arguments:
name The name of the volume. It must be unique from all other volumes for this user. Required

if from_path parameter is not provided.
description An optional description of this volume.
endpoint Specify a Microsoft Azure endpoint, only if you are using an endpoint that is dif-

ferent from the default one https://(serviceaccount).blob.core.windows.net. To
make a non-default endpoint work with the Platform, please first make sure it is supported
by Seven Bridges.

storage_account The name of the storage account that holds the container you want to attach
as a volume.

container The name of the container that you want to attach as a Volume.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

tenant_id Directory (tenant) ID of the application you created on the Azure Portal for the
purpose of attaching your storage container.

client_id Application (client) ID of the application you created on the Azure Portal for the
purpose of attaching your storage container.

client_secret Value of the client secret you created on the Azure Portal for the purpose of
attaching your storage container.

resource_id Resource ID of the Azure storage account. To get it, go to the Azure Portal, open
the storage account’s Overview page and click JSON View.

from_path JSON configuration file containing all required information for registering a vol-
ume.

Returns: Volume object.

Examples:

https://portal.azure.com/

Volumes 233

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Azure volume
azure_volume <- volumes_object$create_azure(
name = "my_new_azure_volume",
description = "Azure volume",
endpoint = "<endpoint>",
container = "<bucket-name",
storage_account = "<storage_account-name>",
tenant_id = "<tenant_id>",
client_id = "<client_id>",
client_secret = "<client_secret>",
resource_id = "<resource_id>"

)
}

Method create_ali_oss(): Create new volume to connect to your bucket on ALI (OSS)
platform.

Usage:
Volumes$create_ali_oss(
name = NULL,
description = NULL,
endpoint = NULL,
bucket = NULL,
prefix = NULL,
access_key_id = NULL,
secret_access_key = NULL,
properties = NULL,
from_path = NULL

)

Arguments:

name The name of the volume. It must be unique from all other volumes for this user. Required
if from_path parameter is not provided.

description An optional description of this volume.
endpoint Specify an Ali Cloud endpoint.
bucket The name of the ALI(OSS) bucket you wish to register as a volume. Required if

from_path parameter is not provided.
prefix A service-specific string prefix to append to all objects created in this volume. If the

service supports folders, and this prefix includes them, the API will attempt to create any
missing folders when it outputs a file.

access_key_id ALI(OSS) access key ID of the user shared with Seven Bridges to access this
bucket. Required if from_path parameter is not provided.

secret_access_key ALI(OSS) secret access key of the user shared with Seven Bridges to
access this bucket. Required if from_path parameter is not provided.

234 Volumes

properties Named list containing the properties of a specific service. These values set the
defaults for operations performed with this volume. Individual operations can override
these defaults by providing a custom properties object.

from_path JSON configuration file containing all required information for registering a vol-
ume.

Returns: Volume object.

Examples:

\dontrun{
volumes_object <- Volumes$new(auth = auth)

Create Ali cloud volume
ali_volume <- volumes_object$create_ali_oss(
name = "my_new_azure_volume",
description = "Ali volume",
endpoint = "<endpoint>",
bucket = "<bucket-name",
access_key_id = "<access_key_id>",
secret_access_key = "<secret_access_key>"
)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
Volumes$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

--
Method `Volumes$query`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Query volumes
volumes_object$query()

End(Not run)

--
Method `Volumes$get`
--

Not run:

Volumes 235

volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$get(id = id)

End(Not run)

--
Method `Volumes$delete`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Get volumes
volumes_object$delete(volume = volume)

End(Not run)

--
Method `Volumes$create_s3_using_iam_user`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM User)
aws_iam_user_volume <- volumes_object$create_s3_using_iam_user(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM User Vol",
access_key_id = "<access-key>",
secret_access_key = "<secret-access-key>"

)

End(Not run)

--
Method `Volumes$create_s3_using_iam_role`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create new AWS Volume (IAM Role)
aws_iam_role_volume <- volumes_object$create_s3_using_iam_role(

name = "my_new_aws_user_volume",
bucket = "<bucket-name>",
description = "AWS IAM Role Vol",
role_arn = "<role-arn-key>",

236 Volumes

external_id = "<external-id>"
)

End(Not run)

--
Method `Volumes$create_google_using_iam_user`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_user_volume <- volumes_object$create_google_using_iam_user(

name = "my_new_gc_user_volume",
access_mode = "RW",
bucket = "<bucket-name>",
description = "GC IAM User volume",
client_email = "<client_email>",
private_key = "<private_key-string>"

)

End(Not run)

--
Method `Volumes$create_google_using_iam_role`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Google cloud volume using IAM User authentication type
gc_iam_role_volume <- volumes_object$create_google_using_iam_role(

name = "my_new_gc_role_volume",
access_mode = "RO",
bucket = "<bucket-name>",
description = "GC IAM Role volume",
configuration = list(

type = "<type-name>",
audience = "<audience-link>",
subject_token_type = "<subject_token_type>",
service_account_impersonation_url = "<service_account_impersonation_url>",
token_url = "<token_url>",
credential_source = list(

environment_id = "<environment_id>",
region_url = "<region_url>",
url = "<url>",
regional_cred_verification_url = "<regional_cred_verification_url>"

)
)

)

Volumes 237

End(Not run)

--
Method `Volumes$create_azure`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Azure volume
azure_volume <- volumes_object$create_azure(
name = "my_new_azure_volume",
description = "Azure volume",
endpoint = "<endpoint>",
container = "<bucket-name",
storage_account = "<storage_account-name>",
tenant_id = "<tenant_id>",
client_id = "<client_id>",
client_secret = "<client_secret>",
resource_id = "<resource_id>"

)

End(Not run)

--
Method `Volumes$create_ali_oss`
--

Not run:
volumes_object <- Volumes$new(auth = auth)

Create Ali cloud volume
ali_volume <- volumes_object$create_ali_oss(

name = "my_new_azure_volume",
description = "Ali volume",
endpoint = "<endpoint>",
bucket = "<bucket-name",
access_key_id = "<access_key_id>",
secret_access_key = "<secret_access_key>"
)

End(Not run)

Index

api, 3
App, 4, 6–8, 16–18, 135, 136
Apps, 14
AsyncJob, 20, 21, 86, 88–90
Auth, 22

Billing, 32, 34, 40
Billing_groups, 39

Collection, 16, 40, 41, 48, 52, 57, 59, 61, 71,
81, 83–85, 90, 99, 101, 103, 109,
130, 133, 135, 138, 150, 162, 172,
175, 178, 182, 197, 202, 203, 225

Division, 46, 47, 52
Divisions, 51

Export, 53, 54, 57, 59, 61, 73, 203
Exports, 56, 122

File, 64, 66–68, 70, 71, 81–85, 121, 122, 124,
133, 134, 187

Files, 79

httr::upload_file(), 3

Import, 94, 96, 99–101, 103, 138, 202, 217,
222

Imports, 97, 125
Invoice, 105, 107, 109
Invoices, 108
Item, 111

Member, 112, 130–132, 197–200

Part, 114
Permission, 118, 133, 201
prepare_items_for_bulk_export, 61, 121
prepare_items_for_bulk_import, 103, 123
Project, 124, 125, 150–152
Projects, 148

Rate, 153
Resource, 155

sevenbridges2::Collection, 210
sevenbridges2::Item, 4, 20, 32, 46, 53, 64,

95, 106, 112, 118, 125, 153, 156,
176, 190, 191, 215, 219

sevenbridges2::Resource, 14, 39, 51, 56,
79, 97, 108, 149, 170, 182, 224

Task, 12, 138, 141, 156, 158–160, 162, 163,
166, 172, 175

Tasks, 170
Team, 48, 176, 177, 182, 183
Teams, 181

Upload, 184
User, 48, 178, 189, 191

Volume, 121, 122, 191, 193, 194, 225–228,
230–232, 234

VolumeContentCollection, 196, 210, 220
VolumeFile, 103, 124, 125, 196, 214, 216, 220
VolumePrefix, 103, 124, 125, 196, 219, 220
Volumes, 224

238

	api
	App
	Apps
	AsyncJob
	Auth
	Billing
	Billing_groups
	Collection
	Division
	Divisions
	Export
	Exports
	File
	Files
	Import
	Imports
	Invoice
	Invoices
	Item
	Member
	Part
	Permission
	prepare_items_for_bulk_export
	prepare_items_for_bulk_import
	Project
	Projects
	Rate
	Resource
	Task
	Tasks
	Team
	Teams
	Upload
	User
	Volume
	VolumeContentCollection
	VolumeFile
	VolumePrefix
	Volumes
	Index

