
Package ‘textrecipes’
March 18, 2025

Title Extra 'Recipes' for Text Processing

Version 1.1.0

Description Converting text to numerical features requires specifically
created procedures, which are implemented as steps according to the
'recipes' package. These steps allows for tokenization, filtering,
counting (tf and tfidf) and feature hashing.

License MIT + file LICENSE

URL https://github.com/tidymodels/textrecipes,

https://textrecipes.tidymodels.org/

BugReports https://github.com/tidymodels/textrecipes/issues

Depends R (>= 3.6), recipes (>= 1.2.0)

Imports cli, lifecycle, dplyr, generics (>= 0.1.0), magrittr, Matrix,
purrr, rlang (>= 1.1.0), SnowballC, sparsevctrs (>= 0.3.0),
tibble, tokenizers, vctrs, glue

Suggests covr, data.table, dials (>= 1.2.0), hardhat, janitor, knitr,
modeldata, reticulate, rmarkdown, sentencepiece, spacyr,
stopwords, stringi, testthat (>= 3.0.0), text2vec,
tokenizers.bpe, udpipe, wordpiece

VignetteBuilder knitr

Config/Needs/website tidyverse/tidytemplate, reticulate

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

SystemRequirements ``GNU make''

NeedsCompilation yes

Author Emil Hvitfeldt [aut, cre] (<https://orcid.org/0000-0002-0679-1945>),
Michael W. Kearney [cph] (author of count_functions),
Posit Software, PBC [cph, fnd]

Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>

1

https://github.com/tidymodels/textrecipes
https://textrecipes.tidymodels.org/
https://github.com/tidymodels/textrecipes/issues
https://orcid.org/0000-0002-0679-1945

2 all_tokenized

Repository CRAN

Date/Publication 2025-03-18 16:10:02 UTC

Contents

all_tokenized . 2
count_functions . 3
emoji_samples . 4
show_tokens . 5
step_clean_levels . 6
step_clean_names . 7
step_dummy_hash . 9
step_lda . 12
step_lemma . 15
step_ngram . 16
step_pos_filter . 19
step_sequence_onehot . 21
step_stem . 23
step_stopwords . 25
step_textfeature . 27
step_texthash . 30
step_text_normalization . 33
step_tf . 34
step_tfidf . 37
step_tokenfilter . 40
step_tokenize . 43
step_tokenize_bpe . 48
step_tokenize_sentencepiece . 50
step_tokenize_wordpiece . 52
step_tokenmerge . 54
step_untokenize . 56
step_word_embeddings . 58
tokenlist . 60

Index 62

all_tokenized Role Selection

Description

all_tokenized() selects all token variables, all_tokenized_predictors() selects all predictor
token variables.

count_functions 3

Usage

all_tokenized()

all_tokenized_predictors()

See Also

recipes::has_role()

count_functions List of all feature counting functions

Description

List of all feature counting functions

Usage

count_functions

Format

Named list of all ferature counting functions

n_words Number of words.

n_uq_words Number of unique words.

n_charS Number of characters. Not counting urls, hashtags, mentions or white spaces.

n_uq_charS Number of unique characters. Not counting urls, hashtags, mentions or white spaces.

n_digits Number of digits.

n_hashtags Number of hashtags, word preceded by a ’#’.

n_uq_hashtags Number of unique hashtags, word preceded by a ’#’.

n_mentions Number of mentions, word preceded by a ’@’.

n_uq_mentions Number of unique mentions, word preceded by a ’@’.

n_commas Number of commas.

n_periods Number of periods.

n_exclaims Number of exclamation points.

n_extraspaces Number of times more then 1 consecutive space have been used.

n_caps Number of upper case characters.

n_lowers Number of lower case characters.

n_urls Number of urls.

n_uq_urls Number of unique urls.

n_nonasciis Number of non ascii characters.

4 emoji_samples

n_puncts Number of punctuations characters, not including exclamation points, periods and com-
mas.

first_person Number of "first person" words.

first_personp Number of "first person plural" words.

second_person Number of "second person" words.

second_personp Number of "second person plural" words.

third_person Number of "third person" words.

to_be Number of "to be" words.

prepositions Number of preposition words.

Details

In this function we refer to "first person", "first person plural" and so on. This list describes what
words are contained in each group.

first person I, me, myself, my, mine, this.

first person plural we, us, our, ours, these.

second person you, yours, your, yourself.

second person plural he, she, it, its, his, hers.

third person they, them, theirs, their, they’re, their’s, those, that.

to be am, is, are, was, were, being, been, be, were, be.

prepositions about, below, excepting, off, toward, above, beneath, on, under, across, from, onto,
underneath, after, between, in, out, until, against, beyond, outside, up, along, but, inside, over,
upon, among, by, past, around, concerning, regarding, with, at, despite, into, since, within,
down, like, through, without, before, during, near, throughout, behind, except, of, to, for.

emoji_samples Sample sentences with emojis

Description

This data set is primarily used for examples.

Usage

emoji_samples

Format

tibble with 1 column

show_tokens 5

show_tokens Show token output of recipe

Description

Returns the tokens as a list of character vectors of a recipe. This function can be useful for diagnos-
tics during recipe construction but should not be used in final recipe steps. Note that this function
will both prep() and bake() the recipe it is used on.

Usage

show_tokens(rec, var, n = 6L)

Arguments

rec A recipe object

var name of variable

n Number of elements to return.

Value

A list of character vectors

Examples

text_tibble <- tibble(text = c("This is words", "They are nice!"))

recipe(~text, data = text_tibble) %>%
step_tokenize(text) %>%
show_tokens(text)

library(modeldata)
data(tate_text)

recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
show_tokens(medium)

6 step_clean_levels

step_clean_levels Clean Categorical Levels

Description

step_clean_levels() creates a specification of a recipe step that will clean nominal data (charac-
ter or factor) so the levels consist only of letters, numbers, and the underscore.

Usage

step_clean_levels(
recipe,
...,
role = NA,
trained = FALSE,
clean = NULL,
skip = FALSE,
id = rand_id("clean_levels")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

clean A named character vector to clean and recode categorical levels. This is NULL
until computed by recipes::prep.recipe(). Note that if the original variable
is a character vector, it will be converted to a factor.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

The new levels are cleaned and then reset with dplyr::recode_factor(). When data to be pro-
cessed contains novel levels (i.e., not contained in the training set), they are converted to missing.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

step_clean_names 7

Tidying

When you tidy() this step, a tibble is returned with columns terms, orginal, value, and id:

terms character, the selectors or variables selected

original character, the original levels

value character, the cleaned levels

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_clean_names(), recipes::step_factor2string(), recipes::step_string2factor(),
recipes::step_regex(), recipes::step_unknown(), recipes::step_novel(), recipes::step_other()

Other Steps for Text Cleaning: step_clean_names()

Examples

library(recipes)
library(modeldata)
data(Smithsonian)

smith_tr <- Smithsonian[1:15,]
smith_te <- Smithsonian[16:20,]

rec <- recipe(~., data = smith_tr)

rec <- rec %>%
step_clean_levels(name)

rec <- prep(rec, training = smith_tr)

cleaned <- bake(rec, smith_tr)

tidy(rec, number = 1)

novel levels are replaced with missing
bake(rec, smith_te)

step_clean_names Clean Variable Names

Description

step_clean_names() creates a specification of a recipe step that will clean variable names so the
names consist only of letters, numbers, and the underscore.

8 step_clean_names

Usage

step_clean_names(
recipe,
...,
role = NA,
trained = FALSE,
clean = NULL,
skip = FALSE,
id = rand_id("clean_names")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
clean A named character vector to clean variable names. This is NULL until computed

by recipes::prep.recipe().
skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?

While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the new clean variable names
value character, the original variable names
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_clean_levels(), recipes::step_factor2string(), recipes::step_string2factor(),
recipes::step_regex(), recipes::step_unknown(), recipes::step_novel(), recipes::step_other()

Other Steps for Text Cleaning: step_clean_levels()

step_dummy_hash 9

Examples

library(recipes)
data(airquality)

air_tr <- tibble(airquality[1:100,])
air_te <- tibble(airquality[101:153,])

rec <- recipe(~., data = air_tr)

rec <- rec %>%
step_clean_names(all_predictors())

rec <- prep(rec, training = air_tr)
tidy(rec, number = 1)

bake(rec, air_tr)
bake(rec, air_te)

step_dummy_hash Indicator Variables via Feature Hashing

Description

step_dummy_hash() creates a specification of a recipe step that will convert factors or character
columns into a series of binary (or signed binary) indicator columns.

Usage

step_dummy_hash(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
signed = TRUE,
num_terms = 32L,
collapse = FALSE,
prefix = "dummyhash",
sparse = "auto",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy_hash")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

10 step_dummy_hash

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

signed A logical, indicating whether to use a signed hash-function (generating values
of -1, 0, or 1), to reduce collisions when hashing. Defaults to TRUE.

num_terms An integer, the number of variables to output. Defaults to 32.

collapse A logical; should all of the selected columns be collapsed into a single column
to create a single set of hashed features?

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

sparse A single string. Should the columns produced be sparse vectors. Can take the
values "yes", "no", and "auto". If sparse = "auto" then workflows can de-
termine the best option. Defaults to "auto".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Feature hashing, or the hashing trick, is a transformation of a text variable into a new set of numer-
ical variables. This is done by applying a hashing function over the values of the factor levels and
using the hash values as feature indices. This allows for a low memory representation of the data
and can be very helpful when a qualitative predictor has many levels or is expected to have new
levels during prediction. This implementation is done using the MurmurHash3 method.

The argument num_terms controls the number of indices that the hashing function will map to. This
is the tuning parameter for this transformation. Since the hashing function can map two different
tokens to the same index, a higher value of num_terms will result in a lower chance of collision.

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The variable names are padded with zeros. For example if
prefix = "hash", and if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101,
their names will be hash001 - hash101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

step_dummy_hash 11

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, num_terms, collapse,
and id:

terms character, the selectors or variables selected

value logical, whether a signed hashing was performed

num_terms integer, number of terms

collapse logical, were the columns collapsed

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• signed: Signed Hash Value (type: logical, default: TRUE)

• num_terms: # Hash Features (type: integer, default: 32)

Sparse data

This step produces sparse columns if sparse = "yes" is being set. The default value "auto" won’t
trigger production fo sparse columns if a recipe is recipes::prep()ed, but allows for a workflow
to toggle to "yes" or "no" depending on whether the model supports recipes::sparse_data and if the
model is is expected to run faster with the data.

The mechanism for determining how much sparsity is produced isn’t perfect, and there will be times
when you want to manually overwrite by setting sparse = "yes" or sparse = "no".

Case weights

The underlying operation does not allow for case weights.

References

Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009).

Kuhn and Johnson (2019), Chapter 7, https://bookdown.org/max/FES/encoding-predictors-with-many-categories.
html

See Also

recipes::step_dummy()

Other Steps for Numeric Variables From Characters: step_sequence_onehot(), step_textfeature()

https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html
https://bookdown.org/max/FES/encoding-predictors-with-many-categories.html

12 step_lda

Examples

library(recipes)
library(modeldata)
data(grants)

grants_rec <- recipe(~sponsor_code, data = grants_other) %>%
step_dummy_hash(sponsor_code)

grants_obj <- grants_rec %>%
prep()

bake(grants_obj, grants_test)

tidy(grants_rec, number = 1)
tidy(grants_obj, number = 1)

step_lda Calculate LDA Dimension Estimates of Tokens

Description

step_lda() creates a specification of a recipe step that will return the lda dimension estimates of a
text variable.

Usage

step_lda(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
lda_models = NULL,
num_topics = 10L,
prefix = "lda",

step_lda 13

keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("lda")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

lda_models A WarpLDA model object from the text2vec package. If left to NULL, the
default, it will train its model based on the training data. Look at the examples
for how to fit a WarpLDA model.

num_topics integer desired number of latent topics.

prefix A prefix for generated column names, defaults to "lda".
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, num_topics, and id:

terms character, the selectors or variables selected

num_topics integer, number of topics

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

14 step_lda

Source

https://arxiv.org/abs/1301.3781

See Also

Other Steps for Numeric Variables From Tokens: step_texthash(), step_tf(), step_tfidf(),
step_word_embeddings()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_lda(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL) %>%
slice(1:2)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

Changing the number of topics.
recipe(~., data = tate_text) %>%

step_tokenize(medium, artist) %>%
step_lda(medium, artist, num_topics = 20) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:2)

Supplying A pre-trained LDA model trained using text2vec
library(text2vec)
tokens <- word_tokenizer(tolower(tate_text$medium))
it <- itoken(tokens, ids = seq_along(tate_text$medium))
v <- create_vocabulary(it)
dtm <- create_dtm(it, vocab_vectorizer(v))
lda_model <- LDA$new(n_topics = 15)

recipe(~., data = tate_text) %>%
step_tokenize(medium, artist) %>%
step_lda(medium, artist, lda_models = lda_model) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:2)

https://arxiv.org/abs/1301.3781

step_lemma 15

step_lemma Lemmatization of Token Variables

Description

step_lemma() creates a specification of a recipe step that will extract the lemmatization of a token
variable.

Usage

step_lemma(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("lemma")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

This stem doesn’t perform lemmatization by itself, but rather lets you extract the lemma attribute of
the token variable. To be able to use step_lemma you need to use a tokenization method that in-
cludes lemmatization. Currently using the "spacyr" engine in step_tokenize() provides lemma-
tization and works well with step_lemma.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

16 step_ngram

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_ngram(), step_pos_filter(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

Not run:
library(recipes)

short_data <- data.frame(text = c(
"This is a short tale,",
"With many cats and ladies."

))

rec_spec <- recipe(~text, data = short_data) %>%
step_tokenize(text, engine = "spacyr") %>%
step_lemma(text) %>%
step_tf(text)

rec_prepped <- prep(rec_spec)

bake(rec_prepped, new_data = NULL)

End(Not run)

step_ngram Generate n-grams From Token Variables

Description

step_ngram() creates a specification of a recipe step that will convert a token variable into a token
variable of ngrams.

step_ngram 17

Usage

step_ngram(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
num_tokens = 3L,
min_num_tokens = 3L,
delim = "_",
skip = FALSE,
id = rand_id("ngram")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

num_tokens The number of tokens in the n-gram. This must be an integer greater than or
equal to 1. Defaults to 3.

min_num_tokens The minimum number of tokens in the n-gram. This must be an integer greater
than or equal to 1 and smaller than n. Defaults to 3.

delim The separator between words in an n-gram. Defaults to "_".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

The use of this step will leave the ordering of the tokens meaningless. If min_num_tokens <
num_tokens then the tokens will be ordered in increasing fashion with respect to the number of
tokens in the n-gram. If min_num_tokens = 1 and num_tokens = 3 then the output will contain all
the 1-grams followed by all the 2-grams followed by all the 3-grams.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

18 step_ngram

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• num_tokens: Number of tokens (type: integer, default: 3)

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_pos_filter(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_ngram(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

step_pos_filter 19

step_pos_filter Part of Speech Filtering of Token Variables

Description

step_pos_filter() creates a specification of a recipe step that will filter a token variable based
on part of speech tags.

Usage

step_pos_filter(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
keep_tags = "NOUN",
skip = FALSE,
id = rand_id("pos_filter")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

keep_tags Character variable of part of speech tags to keep. See details for complete list of
tags. Defaults to "NOUN".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Possible part of speech tags for spacyr engine are: "ADJ", "ADP", "ADV", "AUX", "CONJ",
"CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ",
"SYM", "VERB", "X" and "SPACE". For more information look here https://github.com/
explosion/spaCy/blob/master/spacy/glossary.py.

https://github.com/explosion/spaCy/blob/master/spacy/glossary.py
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py

20 step_pos_filter

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_ngram(), step_stem(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

Not run:
library(recipes)

short_data <- data.frame(text = c(
"This is a short tale,",
"With many cats and ladies."

))

rec_spec <- recipe(~text, data = short_data) %>%
step_tokenize(text, engine = "spacyr") %>%
step_pos_filter(text, keep_tags = "NOUN") %>%
step_tf(text)

rec_prepped <- prep(rec_spec)

bake(rec_prepped, new_data = NULL)

End(Not run)

step_sequence_onehot 21

step_sequence_onehot Positional One-Hot encoding of Tokens

Description

step_sequence_onehot() creates a specification of a recipe step that will take a string and do one
hot encoding for each character by position.

Usage

step_sequence_onehot(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
sequence_length = 100,
padding = "pre",
truncating = "pre",
vocabulary = NULL,
prefix = "seq1hot",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("sequence_onehot")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

sequence_length

A numeric, number of characters to keep before discarding. Defaults to 100.

padding ’pre’ or ’post’, pad either before or after each sequence. defaults to ’pre’.

truncating ’pre’ or ’post’, remove values from sequences larger than sequence_length either
in the beginning or in the end of the sequence. Defaults too ’pre’.

vocabulary A character vector, characters to be mapped to integers. Characters not in the
vocabulary will be encoded as 0. Defaults to letters.

22 step_sequence_onehot

prefix A prefix for generated column names, defaults to "seq1hot".
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

The string will be capped by the sequence_length argument, strings shorter then sequence_length
will be padded with empty characters. The encoding will assign an integer to each character in the
vocabulary, and will encode accordingly. Characters not in the vocabulary will be encoded as 0.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, vocabulary, token, and id:

terms character, the selectors or variables selected

vocabulary integer, index

token character, text corresponding to the index

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

Source

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.
pdf

See Also

Other Steps for Numeric Variables From Characters: step_dummy_hash(), step_textfeature()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~medium, data = tate_text) %>%
step_tokenize(medium) %>%

https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf

step_stem 23

step_tokenfilter(medium) %>%
step_sequence_onehot(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL)

tidy(tate_rec, number = 3)
tidy(tate_obj, number = 3)

step_stem Stemming of Token Variables

Description

step_stem() creates a specification of a recipe step that will convert a token variable to have its
stemmed version.

Usage

step_stem(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
options = list(),
custom_stemmer = NULL,
skip = FALSE,
id = rand_id("stem")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

options A list of options passed to the stemmer function.

custom_stemmer A custom stemming function. If none is provided it will default to "SnowballC".

24 step_stem

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Words tend to have different forms depending on context, such as organize, organizes, and organiz-
ing. In many situations it is beneficial to have these words condensed into one to allow for a smaller
pool of words. Stemming is the act of chopping off the end of words using a set of heuristics.

Note that the stemming will only be done at the end of the word and will therefore not work reliably
on ngrams or sentences.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, is_custom_stemmer, and id:

terms character, the selectors or variables selected

is_custom_stemmer logical, indicate if custom stemmer was used

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_ngram(), step_pos_filter(), step_stopwords(),
step_tokenfilter(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_stem(medium)

tate_obj <- tate_rec %>%
prep()

step_stopwords 25

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

Using custom stemmer. Here a custom stemmer that removes the last letter
if it is a "s".
remove_s <- function(x) gsub("s$", "", x)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_stem(medium, custom_stemmer = remove_s)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

step_stopwords Filtering of Stop Words for Tokens Variables

Description

step_stopwords() creates a specification of a recipe step that will filter a token variable for stop
words.

Usage

step_stopwords(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
language = "en",
keep = FALSE,
stopword_source = "snowball",
custom_stopword_source = NULL,

26 step_stopwords

skip = FALSE,
id = rand_id("stopwords")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of variable names that will be populated (eventually) by the

terms argument. This is NULL until the step is trained by recipes::prep.recipe().
language A character to indicate the language of stop words by ISO 639-1 coding scheme.
keep A logical. Specifies whether to keep the stop words or discard them.
stopword_source

A character to indicate the stop words source as listed in stopwords::stopwords_getsources.
custom_stopword_source

A character vector to indicate a custom list of words that cater to the users spe-
cific problem.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Stop words are words which sometimes are removed before natural language processing tasks.
While stop words usually refers to the most common words in the language there is no universal
stop word list.

The argument custom_stopword_source allows you to pass a character vector to filter against.
With the keep argument one can specify words to keep instead of removing thus allowing you to
select words with a combination of these two arguments.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, keep, and id:

terms character, the selectors or variables selected
value character, name of stop word list
keep logical, whether stop words are removed or kept
id character, id of this step

step_textfeature 27

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_tokenfilter(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(tate_text)
tate_rec <- recipe(~., data = tate_text) %>%

step_tokenize(medium) %>%
step_stopwords(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

With a custom stop words list

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_stopwords(medium, custom_stopword_source = c("twice", "upon"))

tate_obj <- tate_rec %>%
prep(traimomg = tate_text)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

step_textfeature Calculate Set of Text Features

28 step_textfeature

Description

step_textfeature() creates a specification of a recipe step that will extract a number of numeric
features of a text column.

Usage

step_textfeature(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
extract_functions = count_functions,
prefix = "textfeature",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("textfeature")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

extract_functions

A named list of feature extracting functions. Defaults to count_functions. See
details for more information.

prefix A prefix for generated column names, defaults to "textfeature".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

step_textfeature 29

Details

This step will take a character column and returns a number of numeric columns equal to the number
of functions in the list passed to the extract_functions argument.

All the functions passed to extract_functions must take a character vector as input and return a
numeric vector of the same length, otherwise an error will be thrown.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, functions, and id:

terms character, the selectors or variables selected

functions character, name of feature functions

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

Other Steps for Numeric Variables From Characters: step_dummy_hash(), step_sequence_onehot()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_textfeature(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
pull(textfeature_medium_n_words)

tidy(tate_rec, number = 1)
tidy(tate_obj, number = 1)

Using custom extraction functions
nchar_round_10 <- function(x) round(nchar(x) / 10) * 10

30 step_texthash

recipe(~., data = tate_text) %>%
step_textfeature(medium,
extract_functions = list(nchar10 = nchar_round_10)

) %>%
prep() %>%
bake(new_data = NULL)

step_texthash Feature Hashing of Tokens

Description

step_texthash() creates a specification of a recipe step that will convert a token variable into
multiple numeric variables using the hashing trick.

Usage

step_texthash(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
signed = TRUE,
num_terms = 1024L,
prefix = "texthash",
sparse = "auto",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("texthash")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

signed A logical, indicating whether to use a signed hash-function to reduce collisions
when hashing. Defaults to TRUE.

step_texthash 31

num_terms An integer, the number of variables to output. Defaults to 1024.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

sparse A single string. Should the columns produced be sparse vectors. Can take the
values "yes", "no", and "auto". If sparse = "auto" then workflows can de-
termine the best option. Defaults to "auto".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Feature hashing, or the hashing trick, is a transformation of a text variable into a new set of numeri-
cal variables. This is done by applying a hashing function over the tokens and using the hash values
as feature indices. This allows for a low memory representation of the text. This implementation is
done using the MurmurHash3 method.

The argument num_terms controls the number of indices that the hashing function will map to. This
is the tuning parameter for this transformation. Since the hashing function can map two different
tokens to the same index, will a higher value of num_terms result in a lower chance of collision.

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The variable names are padded with zeros. For example if
prefix = "hash", and if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101,
their names will be hash001 - hash101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value and id:

terms character, the selectors or variables selected

value logical, is it signed?

length integer, number of terms

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• signed: Signed Hash Value (type: logical, default: TRUE)

• num_terms: # Hash Features (type: integer, default: 1024)

32 step_texthash

Sparse data

This step produces sparse columns if sparse = "yes" is being set. The default value "auto" won’t
trigger production fo sparse columns if a recipe is recipes::prep()ed, but allows for a workflow
to toggle to "yes" or "no" depending on whether the model supports recipes::sparse_data and if the
model is is expected to run faster with the data.

The mechanism for determining how much sparsity is produced isn’t perfect, and there will be times
when you want to manually overwrite by setting sparse = "yes" or sparse = "no".

Case weights

The underlying operation does not allow for case weights.

References

Kilian Weinberger; Anirban Dasgupta; John Langford; Alex Smola; Josh Attenberg (2009).

See Also

step_tokenize() to turn characters into tokens step_text_normalization() to perform text
normalization.

Other Steps for Numeric Variables From Tokens: step_lda(), step_tf(), step_tfidf(), step_word_embeddings()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_tokenfilter(medium, max_tokens = 10) %>%
step_texthash(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, tate_text)

tidy(tate_rec, number = 3)
tidy(tate_obj, number = 3)

step_text_normalization 33

step_text_normalization

Normalization of Character Variables

Description

step_text_normalization() creates a specification of a recipe step that will perform Unicode
Normalization on character variables.

Usage

step_text_normalization(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
normalization_form = "nfc",
skip = FALSE,
id = rand_id("text_normalization")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

normalization_form

A single character string determining the Unicode Normalization. Must be one
of "nfc", "nfd", "nfkd", "nfkc", or "nfkc_casefold". Defaults to "nfc". See
stringi::stri_trans_nfc() for more details.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

34 step_tf

Tidying

When you tidy() this step, a tibble is returned with columns terms, normalization_form, and
id:

terms character, the selectors or variables selected

normalization_form character, type of normalization

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_texthash() for feature hashing.

Examples

library(recipes)

sample_data <- tibble(text = c("sch\U00f6n", "scho\U0308n"))

rec <- recipe(~., data = sample_data) %>%
step_text_normalization(text)

prepped <- rec %>%
prep()

bake(prepped, new_data = NULL, text) %>%
slice(1:2)

bake(prepped, new_data = NULL) %>%
slice(2) %>%
pull(text)

tidy(rec, number = 1)
tidy(prepped, number = 1)

step_tf Term frequency of Tokens

Description

sparse = "yes" doesn’t take effect when weight_scheme = "double normalization" as it doesn’t
produce sparse data.

step_tf 35

Usage

step_tf(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
weight_scheme = "raw count",
weight = 0.5,
vocabulary = NULL,
res = NULL,
prefix = "tf",
sparse = "auto",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("tf")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

weight_scheme A character determining the weighting scheme for the term frequency calcula-
tions. Must be one of "binary", "raw count", "term frequency", "log normaliza-
tion" or "double normalization". Defaults to "raw count".

weight A numeric weight used if weight_scheme is set to "double normalization". De-
faults to 0.5.

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored here
once this preprocessing step has be trained by recipes::prep.recipe().

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

sparse A single string. Should the columns produced be sparse vectors. Can take the
values "yes", "no", and "auto". If sparse = "auto" then workflows can de-
termine the best option. Defaults to "auto".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

36 step_tf

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

step_tf() creates a specification of a recipe step that will convert a token variable into multiple
variables containing the token counts.

It is strongly advised to use step_tokenfilter before using step_tf to limit the number of variables
created, otherwise you might run into memory issues. A good strategy is to start with a low token
count and go up according to how much RAM you want to use.

Term frequency is a weight of how many times each token appears in each observation. There
are different ways to calculate the weight and this step can do it in a couple of ways. Setting the
argument weight_scheme to "binary" will result in a set of binary variables denoting if a token is
present in the observation. "raw count" will count the times a token is present in the observation.
"term frequency" will divide the count by the total number of words in the document to limit the
effect of the document length as longer documents tends to have the word present more times but
not necessarily at a higher percentage. "log normalization" takes the log of 1 plus the count, adding
1 is done to avoid taking log of 0. Finally "double normalization" is the raw frequency divided by
the raw frequency of the most occurring term in the document. This is then multiplied by weight
and weight is added to the result. This is again done to prevent a bias towards longer documents.

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The variable names are padded with zeros. For example if
prefix = "hash", and if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101,
their names will be hash001 - hash101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the selectors or variables selected

value character, the weighting scheme

id character, id of this step

Tuning Parameters

This step has 2 tuning parameters:

• weight_scheme: Term Frequency Weight Method (type: character, default: raw count)

• weight: Weight (type: double, default: 0.5)

step_tfidf 37

Sparse data

This step produces sparse columns if sparse = "yes" is being set. The default value "auto" won’t
trigger production fo sparse columns if a recipe is recipes::prep()ed, but allows for a workflow
to toggle to "yes" or "no" depending on whether the model supports recipes::sparse_data and if the
model is is expected to run faster with the data.

The mechanism for determining how much sparsity is produced isn’t perfect, and there will be times
when you want to manually overwrite by setting sparse = "yes" or sparse = "no".

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Numeric Variables From Tokens: step_lda(), step_texthash(), step_tfidf(),
step_word_embeddings()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_tf(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, tate_text)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

step_tfidf Term Frequency-Inverse Document Frequency of Tokens

Description

step_tfidf() creates a specification of a recipe step that will convert a token variable into multiple
variables containing the term frequency-inverse document frequency of tokens.

38 step_tfidf

Usage

step_tfidf(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
vocabulary = NULL,
res = NULL,
smooth_idf = TRUE,
norm = "l1",
sublinear_tf = FALSE,
prefix = "tfidf",
sparse = "auto",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("tfidf")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

vocabulary A character vector of strings to be considered.

res The words that will be used to calculate the term frequency will be stored here
once this preprocessing step has be trained by recipes::prep.recipe().

smooth_idf TRUE smooth IDF weights by adding one to document frequencies, as if an
extra document was seen containing every term in the collection exactly once.
This prevents division by zero.

norm A character, defines the type of normalization to apply to term vectors. "l1" by
default, i.e., scale by the number of words in the document. Must be one of
c("l1", "l2", "none").

sublinear_tf A logical, apply sublinear term-frequency scaling, i.e., replace the term fre-
quency with 1 + log(TF). Defaults to FALSE.

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

step_tfidf 39

sparse A single string. Should the columns produced be sparse vectors. Can take the
values "yes", "no", and "auto". If sparse = "auto" then workflows can de-
termine the best option. Defaults to "auto".

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

It is strongly advised to use step_tokenfilter before using step_tfidf to limit the number of variables
created; otherwise you may run into memory issues. A good strategy is to start with a low token
count and increase depending on how much RAM you want to use.

Term frequency-inverse document frequency is the product of two statistics: the term frequency
(TF) and the inverse document frequency (IDF).

Term frequency measures how many times each token appears in each observation.

Inverse document frequency is a measure of how informative a word is, e.g., how common or rare
the word is across all the observations. If a word appears in all the observations it might not give
that much insight, but if it only appears in some it might help differentiate between observations.

The IDF is defined as follows: idf = log(1 + (# documents in the corpus) / (# documents where the
term appears))

The new components will have names that begin with prefix, then the name of the variable, fol-
lowed by the tokens all separated by -. The variable names are padded with zeros. For example if
prefix = "hash", and if num_terms < 10, their names will be hash1 - hash9. If num_terms = 101,
their names will be hash001 - hash101.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, token, weight, and id:

terms character, the selectors or variables selected

token character, name of token

weight numeric, the calculated IDF weight

id character, id of this step

40 step_tokenfilter

Sparse data

This step produces sparse columns if sparse = "yes" is being set. The default value "auto" won’t
trigger production fo sparse columns if a recipe is recipes::prep()ed, but allows for a workflow
to toggle to "yes" or "no" depending on whether the model supports recipes::sparse_data and if the
model is is expected to run faster with the data.

The mechanism for determining how much sparsity is produced isn’t perfect, and there will be times
when you want to manually overwrite by setting sparse = "yes" or sparse = "no".

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Numeric Variables From Tokens: step_lda(), step_texthash(), step_tf(),
step_word_embeddings()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_tfidf(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, tate_text)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

step_tokenfilter Filter Tokens Based on Term Frequency

Description

step_tokenfilter() creates a specification of a recipe step that will convert a token variable to
be filtered based on frequency.

step_tokenfilter 41

Usage

step_tokenfilter(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
max_times = Inf,
min_times = 0,
percentage = FALSE,
max_tokens = 100,
filter_fun = NULL,
res = NULL,
skip = FALSE,
id = rand_id("tokenfilter")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of variable names that will be populated (eventually) by the

terms argument. This is NULL until the step is trained by recipes::prep.recipe().
max_times An integer. Maximal number of times a word can appear before getting re-

moved.
min_times An integer. Minimum number of times a word can appear before getting re-

moved.
percentage A logical. Should max_times and min_times be interpreted as a percentage

instead of count.
max_tokens An integer. Will only keep the top max_tokens tokens after filtering done by

max_times and min_times. Defaults to 100.
filter_fun A function. This function should take a vector of characters, and return a logical

vector of the same length. This function will be applied to each observation
of the data set. Defaults to NULL. All other arguments will be ignored if this
argument is used.

res The words that will be keep will be stored here once this preprocessing step has
be trained by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

42 step_tokenfilter

Details

This step allows you to limit the tokens you are looking at by filtering on their occurrence in the
corpus. You are able to exclude tokens if they appear too many times or too few times in the
data. It can be specified as counts using max_times and min_times or as percentages by setting
percentage as TRUE. In addition one can filter to only use the top max_tokens used tokens. If
max_tokens is set to Inf then all the tokens will be used. This will generally lead to very large data
sets when then tokens are words or trigrams. A good strategy is to start with a low token count and
go up according to how much RAM you want to use.

It is strongly advised to filter before using step_tf or step_tfidf to limit the number of variables
created.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the selectors or variables selected

value integer, number of unique tokens

id character, id of this step

Tuning Parameters

This step has 3 tuning parameters:

• max_times: Maximum Token Frequency (type: integer, default: Inf)

• min_times: Minimum Token Frequency (type: integer, default: 0)

• max_tokens: # Retained Tokens (type: integer, default: 100)

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_stopwords(), step_tokenmerge()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%

step_tokenize 43

step_tokenize(medium) %>%
step_tokenfilter(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

step_tokenize Tokenization of Character Variables

Description

step_tokenize() creates a specification of a recipe step that will convert a character predictor into
a token variable.

Usage

step_tokenize(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
training_options = list(),
options = list(),
token = "words",
engine = "tokenizers",
custom_token = NULL,
skip = FALSE,
id = rand_id("tokenize")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

44 step_tokenize

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

training_options

A list of options passed to the tokenizer when it is being trained. Only applicable
for engine == "tokenizers.bpe".

options A list of options passed to the tokenizer.

token Unit for tokenizing. See details for options. Defaults to "words".

engine Package that will be used for tokenization. See details for options. Defaults to
"tokenizers".

custom_token User supplied tokenizer. Use of this argument will overwrite the token and en-
gine arguments. Must take a character vector as input and output a list of char-
acter vectors.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Tokenization is the act of splitting a character vector into smaller parts to be further analyzed. This
step uses the tokenizers package which includes heuristics on how to to split the text into para-
graphs tokens, word tokens, among others. textrecipes keeps the tokens as a token variable and
other steps will do their tasks on those token variables before transforming them back to numeric
variables.

Working with textrecipes will almost always start by calling step_tokenize followed by modi-
fying and filtering steps. This is not always the case as you sometimes want to apply pre-tokenization
steps; this can be done with recipes::step_mutate().

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Engines

The choice of engine determines the possible choices of token.

The following is some small example data used in the following examples

text_tibble <- tibble(
text = c("This is words", "They are nice!")

)

tokenizers:
The tokenizers package is the default engine and it comes with the following unit of token. All
of these options correspond to a function in the tokenizers package.

step_tokenize 45

• "words" (default)
• "characters"
• "character_shingles"
• "ngrams"
• "skip_ngrams"
• "sentences"
• "lines"
• "paragraphs"
• "regex"
• "ptb" (Penn Treebank)
• "skip_ngrams"
• "word_stems"

The default tokenizer is "word" which splits the text into a series of words. By using step_tokenize()
without setting any arguments you get word tokens

recipe(~ text, data = text_tibble) %>%
step_tokenize(text) %>%
show_tokens(text)

#> [[1]]
#> [1] "this" "is" "words"
#>
#> [[2]]
#> [1] "they" "are" "nice"

This tokenizer has arguments that change how the tokenization occurs and can accessed using the
options argument by passing a named list. Here we are telling tokenizers::tokenize_words that
we don’t want to turn the words to lowercase

recipe(~ text, data = text_tibble) %>%
step_tokenize(text,

options = list(lowercase = FALSE)) %>%
show_tokens(text)

#> [[1]]
#> [1] "This" "is" "words"
#>
#> [[2]]
#> [1] "They" "are" "nice"

We can also stop removing punctuation.

recipe(~ text, data = text_tibble) %>%
step_tokenize(text,

options = list(strip_punct = FALSE,
lowercase = FALSE)) %>%

show_tokens(text)
#> [[1]]
#> [1] "This" "is" "words"
#>
#> [[2]]
#> [1] "They" "are" "nice" "!"

46 step_tokenize

The tokenizer can be changed by setting a different token. Here we change it to return character
tokens.

recipe(~ text, data = text_tibble) %>%
step_tokenize(text, token = "characters") %>%
show_tokens(text)

#> [[1]]
#> [1] "t" "h" "i" "s" "i" "s" "w" "o" "r" "d" "s"
#>
#> [[2]]
#> [1] "t" "h" "e" "y" "a" "r" "e" "n" "i" "c" "e"

It is worth noting that not all these token methods are appropriate but are included for complete-
ness.

spacyr:
• "words"

tokenizers.bpe:
The tokeenizers.bpe engine performs Byte Pair Encoding Text Tokenization.

• "words"

This tokenizer is trained on the training set and will thus need to be passed training arguments.
These are passed to the training_options argument and the most important one is vocab_size.
The determines the number of unique tokens the tokenizer will produce. It is generally set to a
much higher value, typically in the thousands, but is set to 22 here for demonstration purposes.

recipe(~ text, data = text_tibble) %>%
step_tokenize(
text,
engine = "tokenizers.bpe",
training_options = list(vocab_size = 22)

) %>%
show_tokens(text)

#> [[1]]
#> [1] "_Th" "is" "_" "is" "_" "w" "o" "r" "d" "s"
#>
#> [[2]]
#> [1] "_Th" "e" "y" "_" "a" "r" "e" "_" "n" "i" "c" "e"
#> [13] "!"

udpipe:
• "words"

custom_token:
Sometimes you need to perform tokenization that is not covered by the supported engines. In that
case you can use the custom_token argument to pass a function in that performs the tokenization
you want.
Below is an example of a very simple space tokenization. This is a very fast way of tokenizing.

step_tokenize 47

space_tokenizer <- function(x) {
strsplit(x, " +")

}

recipe(~ text, data = text_tibble) %>%
step_tokenize(
text,
custom_token = space_tokenizer

) %>%
show_tokens(text)

#> [[1]]
#> [1] "This" "is" "words"
#>
#> [[2]]
#> [1] "They" "are" "nice!"

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the selectors or variables selected

value character, unit of tokenization

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• token: Token Unit (type: character, default: words)

Case weights

The underlying operation does not allow for case weights.

See Also

step_untokenize() to untokenize.

Other Steps for Tokenization: step_tokenize_bpe(), step_tokenize_sentencepiece(), step_tokenize_wordpiece()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium)

tate_obj <- tate_rec %>%
prep()

48 step_tokenize_bpe

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 1)
tidy(tate_obj, number = 1)

tate_obj_chars <- recipe(~., data = tate_text) %>%
step_tokenize(medium, token = "characters") %>%
prep()

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

step_tokenize_bpe BPE Tokenization of Character Variables

Description

step_tokenize_bpe() creates a specification of a recipe step that will convert a character predictor
into a token variable using Byte Pair Encoding.

Usage

step_tokenize_bpe(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
vocabulary_size = 1000,
options = list(),
res = NULL,
skip = FALSE,
id = rand_id("tokenize_bpe")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

step_tokenize_bpe 49

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

vocabulary_size

Integer, indicating the number of tokens in the final vocabulary. Defaults to
1000. Highly encouraged to be tuned.

options A list of options passed to the tokenizer.

res The fitted tokenizers.bpe::bpe() model tokenizer will be stored here once
this preprocessing step has be trained by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Tuning Parameters

This step has 1 tuning parameters:

• vocabulary_size: # Unique Tokens in Vocabulary (type: integer, default: 1000)

Case weights

The underlying operation does not allow for case weights.

See Also

step_untokenize() to untokenize.

Other Steps for Tokenization: step_tokenize(), step_tokenize_sentencepiece(), step_tokenize_wordpiece()

50 step_tokenize_sentencepiece

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize_bpe(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 1)
tidy(tate_obj, number = 1)

step_tokenize_sentencepiece

Sentencepiece Tokenization of Character Variables

Description

step_tokenize_sentencepiece() creates a specification of a recipe step that will convert a char-
acter predictor into a token variable using SentencePiece tokenization.

Usage

step_tokenize_sentencepiece(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
vocabulary_size = 1000,
options = list(),
res = NULL,
skip = FALSE,
id = rand_id("tokenize_sentencepiece")

)

step_tokenize_sentencepiece 51

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

vocabulary_size

Integer, indicating the number of tokens in the final vocabulary. Defaults to
1000. Highly encouraged to be tuned.

options A list of options passed to the tokenizer.

res The fitted sentencepiece::sentencepiece() model tokenizer will be stored
here once this preprocessing step has be trained by recipes::prep.recipe().

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

If you are running into errors, you can investigate the progress of the compiled code by setting
options = list(verbose = TRUE). This can reveal if sentencepiece ran correctly or not.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_untokenize() to untokenize.

Other Steps for Tokenization: step_tokenize(), step_tokenize_bpe(), step_tokenize_wordpiece()

52 step_tokenize_wordpiece

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize_sentencepiece(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 1)
tidy(tate_obj, number = 1)

step_tokenize_wordpiece

Wordpiece Tokenization of Character Variables

Description

step_tokenize_wordpiece() creates a specification of a recipe step that will convert a character
predictor into a token variable using WordPiece tokenization.

Usage

step_tokenize_wordpiece(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
vocab = wordpiece::wordpiece_vocab(),
unk_token = "[UNK]",
max_chars = 100,
skip = FALSE,
id = rand_id("tokenize_wordpiece")

)

step_tokenize_wordpiece 53

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

vocab Character of Character vector of vocabulary tokens. Defaults to wordpiece_vocab().

unk_token Token to represent unknown words. Defaults to "[UNK]".

max_chars Integer, Maximum length of word recognized. Defaults to 100.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_untokenize() to untokenize.

Other Steps for Tokenization: step_tokenize(), step_tokenize_bpe(), step_tokenize_sentencepiece()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize_wordpiece(medium)

54 step_tokenmerge

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 1)
tidy(tate_obj, number = 1)

step_tokenmerge Combine Multiple Token Variables Into One

Description

step_tokenmerge() creates a specification of a recipe step that will take multiple token variables
and combine them into one token variable.

Usage

step_tokenmerge(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
prefix = "tokenmerge",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("tokenmerge")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

step_tokenmerge 55

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

prefix A prefix for generated column names, defaults to "tokenmerge".
keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.
skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?

While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms and id:

terms character, the selectors or variables selected
id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Token Modification: step_lemma(), step_ngram(), step_pos_filter(), step_stem(),
step_stopwords(), step_tokenfilter()

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium, artist) %>%
step_tokenmerge(medium, artist)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

56 step_untokenize

step_untokenize Untokenization of Token Variables

Description

step_untokenize() creates a specification of a recipe step that will convert a token variable into
a character predictor.

Usage

step_untokenize(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
sep = " ",
skip = FALSE,
id = rand_id("untokenize")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variable names that will be populated (eventually) by the
terms argument. This is NULL until the step is trained by recipes::prep.recipe().

sep a character to determine how the tokens should be separated when pasted to-
gether. Defaults to " ".

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

This steps will turn a token vector back into a character vector. This step is calling paste internally
to put the tokens back together to a character.

step_untokenize 57

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, value, and id:

terms character, the selectors or variables selected

value character, seperator used for collapsing

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Examples

library(recipes)
library(modeldata)
data(tate_text)

tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium) %>%
step_untokenize(medium)

tate_obj <- tate_rec %>%
prep()

bake(tate_obj, new_data = NULL, medium) %>%
slice(1:2)

bake(tate_obj, new_data = NULL) %>%
slice(2) %>%
pull(medium)

tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)

58 step_word_embeddings

step_word_embeddings Pretrained Word Embeddings of Tokens

Description

step_word_embeddings() creates a specification of a recipe step that will convert a token vari-
able into word-embedding dimensions by aggregating the vectors of each token from a pre-trained
embedding.

Usage

step_word_embeddings(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
embeddings,
aggregation = c("sum", "mean", "min", "max"),
aggregation_default = 0,
prefix = "wordembed",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("word_embeddings")

)

Arguments

recipe A recipes::recipe object. The step will be added to the sequence of operations
for this recipe.

... One or more selector functions to choose which variables are affected by the
step. See recipes::selections() for more details.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new columns created by the
original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.
columns A character string of variable names that will be populated (eventually) by the

terms argument. This is NULL until the step is trained by recipes::prep.recipe().
embeddings A tibble of pre-trained word embeddings, such as those returned by the embed-

ding_glove function from the textdata package. The first column should contain
tokens, and additional columns should contain embeddings vectors.

aggregation A character giving the name of the aggregation function to use. Must be one of
"sum", "mean", "min", and "max". Defaults to "sum".

aggregation_default

A numeric denoting the default value for case with no words are matched in
embedding. Defaults to 0.

step_word_embeddings 59

prefix A character string that will be the prefix to the resulting new variables. See notes
below.

keep_original_cols

A logical to keep the original variables in the output. Defaults to FALSE.

skip A logical. Should the step be skipped when the recipe is baked by recipes::bake.recipe()?
While all operations are baked when recipes::prep.recipe() is run, some
operations may not be able to be conducted on new data (e.g. processing the
outcome variable(s)). Care should be taken when using skip = FALSE.

id A character string that is unique to this step to identify it.

Details

Word embeddings map words (or other tokens) into a high-dimensional feature space. This function
maps pre-trained word embeddings onto the tokens in your data.

The argument embeddings provides the pre-trained vectors. Each dimension present in this tibble
becomes a new feature column, with each column aggregated across each row of your text using
the function supplied in the aggregation argument.

The new components will have names that begin with prefix, then the name of the aggregation
function, then the name of the variable from the embeddings tibble (usually something like "d7").
For example, using the default "wordembedding" prefix, and the GloVe embeddings from the text-
data package (where the column names are d1, d2, etc), new columns would be wordembedding_d1,
wordembedding_d1, etc.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

Tidying

When you tidy() this step, a tibble is returned with columns terms, embedding_rows, aggregation,
and id:

terms character, the selectors or variables selected

embedding_rows integer, number of rows in embedding

aggregation character,aggregation

id character, id of this step

Case weights

The underlying operation does not allow for case weights.

See Also

step_tokenize() to turn characters into tokens

Other Steps for Numeric Variables From Tokens: step_lda(), step_texthash(), step_tf(),
step_tfidf()

60 tokenlist

Examples

library(recipes)

embeddings <- tibble(
tokens = c("the", "cat", "ran"),
d1 = c(1, 0, 0),
d2 = c(0, 1, 0),
d3 = c(0, 0, 1)

)

sample_data <- tibble(
text = c(
"The.",
"The cat.",
"The cat ran."

),
text_label = c("fragment", "fragment", "sentence")

)

rec <- recipe(text_label ~ ., data = sample_data) %>%
step_tokenize(text) %>%
step_word_embeddings(text, embeddings = embeddings)

obj <- rec %>%
prep()

bake(obj, sample_data)

tidy(rec, number = 2)
tidy(obj, number = 2)

tokenlist Create Token Object

Description

A tokenlist object is a thin wrapper around a list of character vectors, with a few attributes.

Usage

tokenlist(tokens = list(), lemma = NULL, pos = NULL)

Arguments

tokens List of character vectors

lemma List of character vectors, must be same size and shape as x.

pos List of character vectors, must be same size and shape as x.

tokenlist 61

Value

a tokenlist object.

Examples

abc <- list(letters, LETTERS)
tokenlist(abc)

unclass(tokenlist(abc))

tibble(text = tokenlist(abc))

library(tokenizers)
library(modeldata)
data(tate_text)
tokens <- tokenize_words(as.character(tate_text$medium))

tokenlist(tokens)

Index

∗ Steps for Numeric Variables From
Characters

step_dummy_hash, 9
step_sequence_onehot, 21
step_textfeature, 27

∗ Steps for Numeric Variables From Tokens
step_lda, 12
step_texthash, 30
step_tf, 34
step_tfidf, 37
step_word_embeddings, 58

∗ Steps for Text Cleaning
step_clean_levels, 6
step_clean_names, 7

∗ Steps for Text Normalization
step_text_normalization, 33

∗ Steps for Token Modification
step_lemma, 15
step_ngram, 16
step_pos_filter, 19
step_stem, 23
step_stopwords, 25
step_tokenfilter, 40
step_tokenmerge, 54

∗ Steps for Tokenization
step_tokenize, 43
step_tokenize_bpe, 48
step_tokenize_sentencepiece, 50
step_tokenize_wordpiece, 52

∗ Steps for Un-Tokenization
step_untokenize, 56

∗ datasets
count_functions, 3
emoji_samples, 4

all_tokenized, 2
all_tokenized_predictors

(all_tokenized), 2

count_functions, 3

dplyr::recode_factor(), 6

emoji_samples, 4

recipes::bake.recipe(), 6, 8, 10, 13, 15,
17, 19, 22, 24, 26, 28, 31, 33, 36, 39,
41, 44, 49, 51, 53, 55, 56, 59

recipes::has_role(), 3
recipes::prep(), 11, 32, 37, 40
recipes::prep.recipe(), 6, 8, 10, 13, 15,

17, 19, 21–24, 26, 28, 30, 31, 33, 35,
36, 38, 39, 41, 44, 49, 51, 53, 55, 56,
58, 59

recipes::recipe, 6, 8, 9, 13, 15, 17, 19, 21,
23, 26, 28, 30, 33, 35, 38, 41, 43, 48,
51, 53, 54, 56, 58

recipes::selections(), 6, 8, 10, 13, 15, 17,
19, 21, 23, 26, 28, 30, 33, 35, 38, 41,
43, 48, 51, 53, 54, 56, 58

recipes::sparse_data, 11, 32, 37, 40
recipes::step_dummy(), 11
recipes::step_factor2string(), 7, 8
recipes::step_mutate(), 44
recipes::step_novel(), 7, 8
recipes::step_other(), 7, 8
recipes::step_regex(), 7, 8
recipes::step_string2factor(), 7, 8
recipes::step_unknown(), 7, 8

sentencepiece::sentencepiece(), 51
show_tokens, 5
step_clean_levels, 6, 8
step_clean_levels(), 8
step_clean_names, 7, 7
step_clean_names(), 7
step_dummy_hash, 9, 22, 29
step_lda, 12, 32, 37, 40, 59
step_lemma, 15, 18, 20, 24, 27, 42, 55
step_ngram, 16, 16, 20, 24, 27, 42, 55
step_pos_filter, 16, 18, 19, 24, 27, 42, 55

62

INDEX 63

step_sequence_onehot, 11, 21, 29
step_stem, 16, 18, 20, 23, 27, 42, 55
step_stopwords, 16, 18, 20, 24, 25, 42, 55
step_text_normalization, 33
step_text_normalization(), 32
step_textfeature, 11, 22, 27
step_texthash, 14, 30, 37, 40, 59
step_texthash(), 34
step_tf, 14, 32, 34, 36, 40, 42, 59
step_tfidf, 14, 32, 37, 37, 39, 42, 59
step_tokenfilter, 16, 18, 20, 24, 27, 36, 39,

40, 55
step_tokenize, 43, 49, 51, 53
step_tokenize(), 15, 16, 18, 20, 24, 27, 32,

37, 40, 42, 55, 57, 59
step_tokenize_bpe, 47, 48, 51, 53
step_tokenize_sentencepiece, 47, 49, 50,

53
step_tokenize_wordpiece, 47, 49, 51, 52
step_tokenmerge, 16, 18, 20, 24, 27, 42, 54
step_untokenize, 56
step_untokenize(), 47, 49, 51, 53
step_word_embeddings, 14, 32, 37, 40, 58
stringi::stri_trans_nfc(), 33

tidy(), 7, 8, 11, 13, 16, 18, 20, 22, 24, 26, 29,
31, 34, 36, 39, 42, 47, 49, 51, 53, 55,
57, 59

tidy.step_clean_levels
(step_clean_levels), 6

tidy.step_clean_names
(step_clean_names), 7

tidy.step_dummy_hash (step_dummy_hash),
9

tidy.step_lda (step_lda), 12
tidy.step_lemma (step_lemma), 15
tidy.step_ngram (step_ngram), 16
tidy.step_pos_filter (step_pos_filter),

19
tidy.step_sequence_onehot

(step_sequence_onehot), 21
tidy.step_stem (step_stem), 23
tidy.step_stopwords (step_stopwords), 25
tidy.step_text_normalization

(step_text_normalization), 33
tidy.step_textfeature

(step_textfeature), 27
tidy.step_texthash (step_texthash), 30
tidy.step_tf (step_tf), 34

tidy.step_tfidf (step_tfidf), 37
tidy.step_tokenfilter

(step_tokenfilter), 40
tidy.step_tokenize (step_tokenize), 43
tidy.step_tokenize_bpe

(step_tokenize_bpe), 48
tidy.step_tokenize_sentencepiece

(step_tokenize_sentencepiece),
50

tidy.step_tokenize_wordpiece
(step_tokenize_wordpiece), 52

tidy.step_tokenmerge (step_tokenmerge),
54

tidy.step_untokenize (step_untokenize),
56

tidy.step_word_embeddings
(step_word_embeddings), 58

token, 2, 15, 16, 19, 23, 25, 30, 36, 37, 40, 43,
44, 48, 50, 52, 54, 56, 58

tokenizers.bpe::bpe(), 49
tokenizers::tokenize_words, 45
tokenlist, 60, 60, 61
tokens, 16, 18, 20, 24, 27, 32, 37, 40, 42, 55,

57, 59

	all_tokenized
	count_functions
	emoji_samples
	show_tokens
	step_clean_levels
	step_clean_names
	step_dummy_hash
	step_lda
	step_lemma
	step_ngram
	step_pos_filter
	step_sequence_onehot
	step_stem
	step_stopwords
	step_textfeature
	step_texthash
	step_text_normalization
	step_tf
	step_tfidf
	step_tokenfilter
	step_tokenize
	step_tokenize_bpe
	step_tokenize_sentencepiece
	step_tokenize_wordpiece
	step_tokenmerge
	step_untokenize
	step_word_embeddings
	tokenlist
	Index

